Microstructure and Oxidation Behavior of Cobalt Diffusional Coating Fabricated on AISI 429 Stainless Steel

  • Hadi EbrahimifarEmail author
Original Paper


The best candidates for interconnects in solid oxide fuel cells are chromia-forming alloys. However, the low oxidation resistance of these materials needs to be solved to obtain better performance of the interconnect. The aim of this study was to coat AISI 429 ferritic stainless steel with a cobalt-based layer using pack cementation technique. For investigating the oxidation behavior of the coated and uncoated AISI 429 steel, three types of oxidation tests were conducted: isothermal oxidation at 750 °C; cyclic oxidation at 750 °C; and oxidation at different temperatures (400–900 °C). The cobalt-based coating and oxide scales formed were studied by X-ray diffraction and scanning electron microscopy. The cobalt-based coating converted to Co3O4, CoFe2O4, and CoCr2O4 spinels during oxidation exposure. The results showed that the cobalt spinels improved oxidation resistance through the decrease in Cr2O3 growth.


Oxidation Cobalt Coating Microstructure SOFC 


  1. 1.
    S. C. Paulson and V. I. Birss, Journal of the Electrochemical Society 151, 1961 (2004).CrossRefGoogle Scholar
  2. 2.
    S. P. Jiang and Y. D. Zhen, Solid State Ionics 179, 1459 (2008).CrossRefGoogle Scholar
  3. 3.
    H. Zhang, J. Wua, X. Liu, and A. Baker, International Journal of Hydrogen Energy 38, 5075 (2013).CrossRefGoogle Scholar
  4. 4.
    I. Belogolovsky, X. D. Zhou, H. Kurokawa, P. Y. Hou, S. Visco, and H. U. Anderson, Journal of the Electrochemical Society 154, 976 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Chen, P. Y. Hou, C. P. Jacobson, S. J. Visko, and L. C. De Jonghe, Solid State Ionics 176, 425 (2005).CrossRefGoogle Scholar
  6. 6.
    K. Przybylski, T. Brylewski, E. Durda, R. Gawel, and A. Kruk, Journal of Thermal Analysis and Calorimetry 116, 825 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 84, 329 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Horita, Y. Xiong, H. Kishimoto, K. Yamaji, N. Sakai, and H. Yokokawa, Journal of the Electrochemical Society 150, 243 (2003).CrossRefGoogle Scholar
  9. 9.
    Z. G. Yang, G. G. Xia, S. P. Simner, and J. W. Stevenson, Electrochemical Solid-State. Letters 8, A168 (2005).CrossRefGoogle Scholar
  10. 10.
    W. Wei, W. Chen, and D. G. Ivey, Chemistry of Materials. 19, 2816 (2007).CrossRefGoogle Scholar
  11. 11.
    M. R. Bateni, P. Wei, X. Deng, and A. Petric, Surface & Coatings Technology 201, 4677 (2007).CrossRefGoogle Scholar
  12. 12.
    P. Wei, X. Deng, M. R. Bateni, and A. Petric, Corrosion 63, 529 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Petric and H. Ling, Journal of American Ceramic Society 90, 1515 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Zandrahimi, J. Vatandoost, and H. Ebrahimifar, Journal of Materials Engineering and Performance 21, 2074 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Zandrahimi, J. Vatandoost, and H. Ebrahimifar, Oxidation of Metals 76, 347 (2011).CrossRefGoogle Scholar
  16. 16.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 84, 129 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Ebrahimifar and M. Zandrahimi, Indian Journal of Engineering and Materials Sciences 18, 314 (2011).Google Scholar
  18. 18.
    D. Schmidt, M. Galetz, and M. Schütze, Oxidation of metals 79, 589 (2013).CrossRefGoogle Scholar
  19. 19.
    Z. D. Xiang, S. R. Rose, and P. K. Datta, Materials science and technology 18, 1479 (2002).CrossRefGoogle Scholar
  20. 20.
    Z. D. Xiang and P. K. Datta, Acta Materialia 54, 4453 (2006).CrossRefGoogle Scholar
  21. 21.
    S. P. Chakraborty, S. Banerjee, I. G. Kulwant Singh, A. K. Sharma, and A. K. Suri Grover, Journal of Materials Processing Technology 207, 240 (2008).CrossRefGoogle Scholar
  22. 22.
    M. R. Bateni, S. Mirdamadi, F. Ashrafizadeh, J. A. Szpunar, and R. A. L. Drew, Surface and Coatings Technology 139, 192 (2001).CrossRefGoogle Scholar
  23. 23.
    S. C. Kung and R. A. Rapp, Surface and Coatings Technology 32, 41 (1987).CrossRefGoogle Scholar
  24. 24.
    H. Ebrahimifar and M. Zandrahimi, Oxidation of Metals 75, 125 (2010).CrossRefGoogle Scholar
  25. 25.
    X. L. Wu, N. R. Tao, Q. M. Wei, P. Jiang, J. Lu, and K. Lu, Acta Materialia 55, 5768 (2007).CrossRefGoogle Scholar
  26. 26.
    K. Ishida and T. Nishizawa, Bulletin of Alloy Phase Diagrams 11, 357 (1990).CrossRefGoogle Scholar
  27. 27.
    T. Nishizawa and K. Ishida, Phase Diagrams of Binary Iron Alloys, (ASM, Materials Park, 1993), p. 93.Google Scholar
  28. 28.
    G. Inden, in User Applications of Alloy Phase Diagrams, ed. L. Kaufman (ASM, Materials Park, 1987), p. 25.Google Scholar
  29. 29.
    D. W. Rogers, The Gibbs Free Energy (Wiley, Hoboken, 2010).CrossRefGoogle Scholar
  30. 30.
    H. DeVoe, Thermodynamics and Chemistry, 2nd edn. (Prentice Hall, Upper Saddle River, 2001).Google Scholar
  31. 31.
    T. Lelièvre, G. Stoltz, and M. Rousset, Free Energy Computations: A Mathematical Perspective (Imperial College, Kensington, 2010).CrossRefGoogle Scholar
  32. 32.
    R. Pichoir, Aluminide Coatings on Nickel or Cobalt Base Superalloy: Principle Parameters Determining Their Morphology and Composition High Temperature Alloys for Gas Turbines (Journal Applied Science Publisher LTD, London, 1978), p. 191.Google Scholar
  33. 33.
    R. Pichoir, Influence of the Mode of Formation on the Oxidation and Behavior of NiAl Type Protective Coatings, Materials and Coatings to Resist High Temperature Corrosion (Applied Science Publishers LTD, London, 1978), p. 271.Google Scholar
  34. 34.
    Y. S. Chou, J. W. Stevenson, and P. Singh, Journal of Power Sources 185, 1001 (2008).CrossRefGoogle Scholar
  35. 35.
    T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, Solid State Ionics 143, 131 (2001).CrossRefGoogle Scholar
  36. 36.
    L. Cooper, S. Benhaddad, A. Wood, and D. G. Ivey, Journal of Power Sources 184, 220 (2008).CrossRefGoogle Scholar
  37. 37.
    Z. G. Yang, International Materials Reviews, International Materials Reviews 53, 39 (2008).CrossRefGoogle Scholar
  38. 38.
    S. W. Freiman, NIST 31. Phase Equilibria Diagrams Database, National Institute of Standards and Technology, American Ceramic Society, CD-ROM Database Version 2.1 (Westerville, Ohio, 1998).Google Scholar
  39. 39.
    JADE Version 7 Software-XRD Processing, Identification and Quantification (Materials Data, Inc., 2004).Google Scholar
  40. 40.
    S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, R. Molins, and M. Sennour, Journal of Power Sources 171, 652 (2007).CrossRefGoogle Scholar
  41. 41.
    E. N’Dah, S. Tsipas, M. P. Hierro, and F. J. Pérez, Corrosion Science 49, 3850 (2007).CrossRefGoogle Scholar
  42. 42.
    S. Molin, B. Kusz, M. Gazda, and P. Jasinski, Journal of Power Sources 181, 31 (2008).CrossRefGoogle Scholar
  43. 43.
    N. Shaigan, W. Qu, D. G. Ivey, and W. Chen, Journal of Power Sources 195, 1529 (2010).CrossRefGoogle Scholar
  44. 44.
    N. Shaigan, D. G. Ivey, and W. Chen, Journal of Power Sources 195, 1529 (2010).CrossRefGoogle Scholar
  45. 45.
    N. Shaigan, D. G. Ivey and W. Chen, Journal of Power Sources 183, 651 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Engineering, Faculty of Mechanical and Materials EngineeringGraduate University of Advanced TechnologyKermanIran

Personalised recommendations