Advertisement

Formation of High-Oxidation-Resistant NiAl Surface Layer by Simultaneous Electrodeposition of Al and Zr in Molten Salt

  • Michihisa FukumotoEmail author
  • Fumiaki Watanabe
  • Kishin Saito
  • Motoi Hara
Original Paper
  • 46 Downloads

Abstract

A coating layer consisting of Zr-containing NiAl was prepared by the simultaneous electrodeposition of Al and Zr using a molten salt as the medium. In particular, the morphology and chemical composition of the coating layer were investigated based on the influence of the ZrF4 concentration of the bath and the electrodeposition potential. Furthermore, in the surface layer consisting of the NiAl phase, the Zr concentration was measured by ICP analysis of the solution in which the surface layer was dissolved. For the prepared samples, the cyclic oxidation resistance was evaluated in air at 1423 K. For the Ni sample after the electrodeposition in a NaCl–KCl–3.5 mol%AlF3 bath without ZrF4 at − 1.5 V, a surface layer consisting of Ni2Al3 was formed. On the other hand, when the simultaneous electrodeposition of Al and Zr was carried out in a NaCl–KCl–3.5 mol%AlF3 salt containing 0.05 mol%ZrF4 at − 1.3 V and the molten salt containing 0.1 mol%ZrF4 at − 1.3 ~ − 1.5 V, the formation of a surface layer consisting of NiAl was observed. In particular, by the simultaneous electrodeposition in the molten salt containing 0.1 mol% ZrF4 at − 1.5 V, a thick surface layer consisting of NiAl (about 40 μm) was formed. Furthermore, the detailed analysis of the Zr concentration in the surface layer revealed that the Zr content in the layer was 0.05 at%. Cyclic oxidation tests revealed that a mass loss was observed for the samples coated with the NiAl layer formed by the electrodeposition of only Al. However, for the sample coated with the NiAl layer containing a small amount of Zr, no decrease in the mass due to exfoliation of the oxide was observed. After the cyclic oxidation tests, a scale consisting of α-Al2O3 with good adhesion to the substrate metal was formed on the samples coated with the NiAl layer containing a small amount of Zr. This scale included ZrO2 particles.

Keywords

Simultaneous electrodeposition Electrodeposition temperature Molten salt Zirconium Aluminum Cyclic oxidation Nickel aluminide Coating 

References

  1. 1.
    B. A. Pint, Surface and Coating Technology 188–189, 2004 (71).CrossRefGoogle Scholar
  2. 2.
    S. Taniguchi, T. Shibata and H. Tsuruoka, Oxidation of Metals 26, 1986 (1).CrossRefGoogle Scholar
  3. 3.
    J. M. Francis and J. A. Jutson, Corrosion Science 8, 1968 (445).CrossRefGoogle Scholar
  4. 4.
    J. L. Tein and F. S. Pettit, Metallurgical Transactions 3, 1972 (1587).CrossRefGoogle Scholar
  5. 5.
    A. S. Kahn, C. E. Lowell and C. A. Barrett, Journal of the Electrochemical Society 127, 1980 (670).CrossRefGoogle Scholar
  6. 6.
    B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prüßner and K. B. Alexander, Materials Science and Engineering A 245, 1998 (201).CrossRefGoogle Scholar
  7. 7.
    C. H. Xu, W. Gao and H. Gong, Intermetallics 8, 2000 (769).CrossRefGoogle Scholar
  8. 8.
    C. Houngninou, S. Chevalier and J. P. Larpin, Applied Surface Science 236, 2004 (256).CrossRefGoogle Scholar
  9. 9.
    D. B. Lee and M. L. Santella, Materials Science and Engineering A 374, 2004 (217).CrossRefGoogle Scholar
  10. 10.
    Y. Wang and W. Chen, Microstructures. Surface and Coating Technology 183, 2004 (18).CrossRefGoogle Scholar
  11. 11.
    M. H. Enayati, F. Karimzadeh, M. Jafari, A. Markazi and A. Tahvilian, Wear 309, 2014 (192).CrossRefGoogle Scholar
  12. 12.
    R. Bianco and R. A. Rapp, Journal of the Electrochemical Society 140, 1993 (1181).CrossRefGoogle Scholar
  13. 13.
    S. Hamadi, M.-P. Bacos, M. Polain, A. Seyeux, V. Maurice and P. Marcus, Surface and Coating Technology 204, 2009 (756).CrossRefGoogle Scholar
  14. 14.
    M. Ueda, D. Susukida, S. Konda and T. Ohtsuka, Surface and Coating Technology 176, 2004 (202).CrossRefGoogle Scholar
  15. 15.
    M. Gibilaro, L. Massot, P. Chamelot and P. Taxil, Journal of Alloys and Compounds 417, 2009 (412).CrossRefGoogle Scholar
  16. 16.
    H. L. Chan and J. Yun, Electrochemistry Communications 84, 2017 (86).CrossRefGoogle Scholar
  17. 17.
    D. Quaranta, L. Massot, M. Gibilaro, E. Mendes, J. Serp and P. Chamelot, Electrochemica Acta 265, 2018 (586).CrossRefGoogle Scholar
  18. 18.
    M. Fukumoto, T. Saruta, M. Hara and T. Narita, Journal of the Japan Institute of Metals 71, 2007 (41).CrossRefGoogle Scholar
  19. 19.
    M. Fukumoto, T. Yokota, M. Hara and T. Narita, Journal of the Japan Institute of Metals 74, 2010 (584).CrossRefGoogle Scholar
  20. 20.
    Q. Chen, L. H. Huang, H. S. Liu, F. Zheng and Z. P. Jin, Journal of Phase Equilibria and Diffusion 34, 2013 (390).CrossRefGoogle Scholar
  21. 21.
    M. Fukumoto, T. Rikiishi, K. Sugita and M. Hara, Journal of the Japan Institute of Metals 77, 2013 (218).CrossRefGoogle Scholar
  22. 22.
    C. Guang-sen, M. Okido and T. Oki, Journal of Applied Electrochemistry 20, 1990 (77).CrossRefGoogle Scholar
  23. 23.
    H. Okamoto, Journal of Phase Equilibria and Diffusion 25, 2004 (394).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science and Engineering Course, Department of Materials Science, Graduate School of Engineering ScienceAkita UniversityAkitaJapan

Personalised recommendations