Oxidation of Metals

, Volume 91, Issue 1–2, pp 11–31 | Cite as

Use of Microanalysis to Better Understand the High-Temperature Corrosion Behavior of Chromium Exposed to Multi-Oxidant Environments

  • Satia SoltanattarEmail author
  • Pawel Nowakowski
  • Cecile S. Bonifacio
  • Paul Fischione
  • Brian Gleeson
Original Paper


The corrosion behavior of metals and alloys at high temperatures in complex multi-oxidant environments is of a great interest for achieving extended service performances and improved operation efficiencies. In this basic study, the scaling reactions of pure chromium in several multi-oxidant gas mixtures were assessed. The environments studied are similar to those that exist in low-NOx burner and coal gasification atmospheres, which are very reducing and favor sulfidation and carburization, together with possible formation of Cr2O3. The effect of sulfur on chromia-scale growth kinetics was also considered. Isothermal exposures were done for up to 100 h at 871 °C (1600 °F), and comparison was made to similar exposures to air. Exposed samples were characterized in detail using some combination of X-ray diffraction and electron beam scattering and spectroscopic techniques. It was found that chromia scales formed in mixed gases containing water vapor grew much faster and had a finer grain structure than those formed in dry air. Both inward growth and outward growth of the chromia scale were inferred for the mixed-gas conditions. The effect of a high carbon potential in the gas on the scaling behavior is also discussed.

Graphical Abstract


Mixed gas Chromia Sulfidation Carburization Water vapor 



The authors would like to thank Prof. Gerald Meier for helpful discussions and Dr. Sahar Farjami for technical assistance on EBSD sample preparation and microscopy.


  1. 1.
    H. J. Grabke, Corrosion Science 56, 2000 (801).CrossRefGoogle Scholar
  2. 2.
    D. J. Young and S. Watson, Oxidation of Metals 44, 1995 (239).CrossRefGoogle Scholar
  3. 3.
    T. D. Nguyen, J. Q. Zhang and D. J. Young, Materials at High Temperatures 32, 2015 (16).CrossRefGoogle Scholar
  4. 4.
    C. S. Giggins and F. S. Pettit, Oxidation of Metals 14, 1980 (363).CrossRefGoogle Scholar
  5. 5.
    M. H. LaBranche and G. J. Yurek, Oxidation of Metals 28, 1987 (73).CrossRefGoogle Scholar
  6. 6.
    K. Natesan, Corrosion-NACE 41, 1985 (646).CrossRefGoogle Scholar
  7. 7.
    A. Rahmel, M. Schorr, A. Velasco-Tellez and A. Pelton, Oxidation of Metals 27, 1987 (199).CrossRefGoogle Scholar
  8. 8.
    C. D. Asmundis, F. Gesmundo and C. Bottino, Oxidation of Metals 14, 1980 (351).CrossRefGoogle Scholar
  9. 9.
    F. Gesmundo, Oxidation of Metals 13, 1979 (237).CrossRefGoogle Scholar
  10. 10.
    M. A. Harper and J. P. Cotner, Oxidation of Metals 53, 2000 (427).CrossRefGoogle Scholar
  11. 11.
    J. A. Kneeshaw, The corrosion behavior of Fe–Cr–Ni alloys in complex high temperature gaseous atmospheres containing the reactants oxygen, sulphur and carbon. Doctoral Dissertation, Loughborough University, 1987.Google Scholar
  12. 12.
    X. G. Zheng and D. J. Young, Materials Science Forum 251–254, 1997 (567).CrossRefGoogle Scholar
  13. 13.
    R. A. Perkins, in DOE, EPRI, GRI, NBS, Third Annual Conference on Materials for Coal Conversion and Utilization, October 10-12, 1978.Google Scholar
  14. 14.
    M. F. Stroosnijder and W. J. Quadakkers, High Temperature Technology 4, 1986 (141).CrossRefGoogle Scholar
  15. 15.
    A. D. Smigelskas and E. O. Kirkendall, Transactions of AIME 171, 1947 (130).Google Scholar
  16. 16.
    H. Hindamtw and D. P. Whittle, Oxidation of Metals 18, 1982 (245).CrossRefGoogle Scholar
  17. 17.
    D. Caplan, A. Harvey and M. Cohen, Corrosion Science 3, 1963 (161).CrossRefGoogle Scholar
  18. 18.
    F. A. Golightly, G. C. Wood and F. H. Stott, Oxidation of Metals 14, 1980 (217).CrossRefGoogle Scholar
  19. 19.
    F. A. Golightly, F. H. Stott and G. C. Wood, Oxidation of Metals 10, 1976 (163).CrossRefGoogle Scholar
  20. 20.
    K. P. Lillerud and P. Kofstad, Journal of Electrochemical Society 127, 1980 (2397).CrossRefGoogle Scholar
  21. 21.
    P. Kofstad and K. P. Lillerud, Journal of Electrochemical Society 127, 1980 (2410).CrossRefGoogle Scholar
  22. 22.
    D. R. Gaskell, An Introduction to Transport Phenomena in Materials Engineering, (Macmillan, New York, 1992).Google Scholar
  23. 23.
    D. R. Poirier and G. H. Geiger, Transport Phenomena in Materials Processing, (The Minerals, Metals & Materials Society, Warrendale, 1994).Google Scholar
  24. 24.
    M. K. Næss, D. J. Young, J. Zhang, J. E. Olsen and G. Tranell, Oxidation of Metals 78, 2012 (363).CrossRefGoogle Scholar
  25. 25.
    D. J. Young, High Temperature Oxidation and Corrosion of Metals, (Elsevier, Oxford, 2008).Google Scholar
  26. 26.
    J. Zurek, D. J. Young, E. Essuman, M. Hansel, H. J. Penkalla, L. Niewolak and W. J. Quadakkers, Materials Science and Engineering A 477, 2008 (259).CrossRefGoogle Scholar
  27. 27.
    D. J. Young, Materials Science Forum 595–598, 2008 (1189).CrossRefGoogle Scholar
  28. 28.
    L. Latu-Romain, Y. Parsa, S. Mathieu, M. Vilasi, M. Ollivier, A. Galerie and Y. Wouters, Oxidation of Metals 86, 2016 (497).CrossRefGoogle Scholar
  29. 29.
    M. Hänsel, L. Garcia-Fresnillo, S. L. Tobing and V. Shemet, Materials at High Temperatures 29, 2012 (187).CrossRefGoogle Scholar
  30. 30.
    A. Rahmel and J. Tobolski, Corrosion Science 5, 1965 (333).CrossRefGoogle Scholar
  31. 31.
    C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 111, 1964 (1215).CrossRefGoogle Scholar
  32. 32.
    M. Michalik, M. Hänsel, J. Zurek, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 22, 2005 (213).CrossRefGoogle Scholar
  33. 33.
    A. Galerie, Y. Wouters and M. Caillet, Materials Science Forum 369–372, 2001 (231).CrossRefGoogle Scholar
  34. 34.
    H. J. Grabke, Materials Science and Engineering 42, 1980 (91).CrossRefGoogle Scholar
  35. 35.
    R. G. Olsson and E. T. Turkdogan, Metallurgical Transactions 5, 1974 (21).Google Scholar
  36. 36.
    T. A. Ramanarayanan, Materials Science and Engineering 87, 1987 (113).CrossRefGoogle Scholar
  37. 37.
    J. Barnes, J. Corish and J. F. Norton, Oxidation of Metals 26, 1986 (333).CrossRefGoogle Scholar
  38. 38.
    C. Wagner, Zeitschrift für Elektrochemie 63, 1959 (772).Google Scholar
  39. 39.
    A. Atkinson, Materials Science and Technology 4, 1988 (1046).CrossRefGoogle Scholar
  40. 40.
    A. C. S. Sabioni, A. M. Huntz, J. Philibert and B. Lesage, Journal of Materials Science 27, 1992 (4782).CrossRefGoogle Scholar
  41. 41.
    R. E. Lobnig, H. P. Schmidt, K. Hennesen and H. J. Grabke, Oxidation of Metals 37, 1992 (81).CrossRefGoogle Scholar
  42. 42.
    A. M. Huntz and S. C. Tsai, Journal of Materials Science Letters 13, 1994 (821).CrossRefGoogle Scholar
  43. 43.
    A. Atkinson, Reviews of Modern Physics 57, 1985 (437).CrossRefGoogle Scholar
  44. 44.
    A. H. Heuer, M. Zahiri Azar, H. Guhl, M. Foulkes, B. Gleeson, T. Nakagawa, Y. Ikuhara and M. W. Finnis, Journal of the American Ceramic Society 99, 2016 (733).CrossRefGoogle Scholar
  45. 45.
    T. Nakagawa, H. Nishimura, I. Sakaguchi, N. Shibata, K. Matsunaga, T. Yamamoto and Y. Ikuhara, Scripta Materialia 65, 2011 (544).CrossRefGoogle Scholar
  46. 46.
    I. Sakaguchi, V. Srikanth, T. Ikegami and H. Haneda, Journal of the American Ceramic Society 78, 1995 (2557).CrossRefGoogle Scholar
  47. 47.
    J. L. Meijering, in Advances in Materials Research, 5th ed, ed. H. Herman (Wiley-Interscience, New York, 1971).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Satia Soltanattar
    • 1
    Email author
  • Pawel Nowakowski
    • 2
  • Cecile S. Bonifacio
    • 2
  • Paul Fischione
    • 2
  • Brian Gleeson
    • 1
  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.E.A. Fischione Instruments, Inc.ExportUSA

Personalised recommendations