Advertisement

Steam Oxidation of Zirconium–Yttrium Alloys from 500–\(1100\,^{\circ }\text {C}\)

  • Peter Mouche
  • Brent Heuser
Original Paper

Abstract

The steam oxidation kinetics, oxide formation, and hydrogen uptake of nuclear-grade Zr with 0.01–12 wt% yttrium were studied. Metallography and diffraction of the as-received material showed yttrium remained trapped in solid solution in concentrations up to 2 wt%; therefore, steam oxidation focused on 0.01–1 wt% Y samples. Thermogravimetric analysis was performed in a steam–argon environment at \(500\,^{\circ }\text {C}, 700\,^{\circ }\text {C}, 900\,^{\circ }\text {C}\), and \(1100\,^{\circ }\text {C}\) at atmospheric pressure. At \(500\,^{\circ }\text {C}\) and \(700\,^{\circ }\text {C}\), increasing the yttrium concentration increased the total weight gain by up to 300% and caused an increase the oxidation power-law exponent. At \(900\,^{\circ }\text {C}\), increasing the yttrium concentration caused a much smaller increase in the weight gain, and resulted in a decrease in the oxidation power-law exponent. At the highest temperature, \(1100\,^{\circ }\text {C}\), increasing the yttrium concentration had a minimal effect on the kinetics. Transmission synchrotron diffraction and cross-sectional optical microscopy showed significant hydrogen uptake at \(500\,^{\circ }\text {C}\) and \(700\,^{\circ }\text {C}\) through the formation of \(\delta\) and \(\gamma\) zirconium hydrides. The volume of these two hydride phases increased with increasing yttrium concentration. This hydrogen uptake appears to be linked to the increase in the steam oxidation power-law exponent observed at \(500\,^{\circ }\text {C}\) and \(700\,^{\circ }\text {C}\).

Keywords

Zirconium Yttrium Steam oxidation Hydride 

Notes

Acknowledgements

This study was supported by the US Department of Energy NEUP IRP under the IRP-12-4728 as well as the NRC graduate fellowship. I would like to thank the Frederick Seitz Materials Research Laboratory at UIUC and the ANL APS 11-ID-C beamline scientists for the use of the facilities. Special thanks goes to Yang Ren, Mohamed Elbakhshwan, and Jun-li Lin for their assistance with synchrotron data collection and analysis.

References

  1. 1.
    D. Northwood and U. Kosasih, International Metals Reviews 28, (1), 1983 (92).CrossRefGoogle Scholar
  2. 2.
    I. Batra, R. Singh, P. Sengupta, B. Maji, K. Madangopal, K. Manikrishna, R. Tewari and G. Dey, Journal of Nuclear Materials 389, (3), 2009 (500).CrossRefGoogle Scholar
  3. 3.
    I. Batra, R. Singh, H. Khandelwal, A. Mukherjee, N. Krishnamurthy, C. Gargi and B. Shah, Journal of Nuclear Materials 434, (1), 2013 (389).CrossRefGoogle Scholar
  4. 4.
    C. Li, L. Xiong, E. Wu and S. Liu, Journal of Nuclear Materials 457, 2015 (142).CrossRefGoogle Scholar
  5. 5.
    J. Peng, Y. Chen, G. Yan, M. Wu, J. Zhang, L. Wang, J. Li, Z. Guo, in Advances in Energy and Environment Research: Proceedings of the International Conference on Advances in Energy and Environment Research (ICAEER2016), Guangzhou City, China, August 12–14, 2016 (CRC Press, 2017), p. 43.Google Scholar
  6. 6.
    D. Phalen, D. Vaughan, N. Richard, Advanced in X-Ray Analysis 8 (1965).CrossRefGoogle Scholar
  7. 7.
    M. Nasrallah and D. Douglass, Oxidation of Metals 9, (4), 1975 (357).CrossRefGoogle Scholar
  8. 8.
    L. Fuhrmann, C. Konrad, R. Völkl and U. Glatzel, Corrosion Science 94, 2015 (218).CrossRefGoogle Scholar
  9. 9.
    X. Bai, J. Xu, F. He and Y. Fan, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 160, (1), 2000 (49).CrossRefGoogle Scholar
  10. 10.
    J. Chevalier, L. Gremillard, A. V. Virkar and D. R. Clarke, Journal of the American Ceramic Society 92, (9), 2009 (1901).CrossRefGoogle Scholar
  11. 11.
    K. Sridharan, S. Harrington, A. Johnson, J. Licht, M. Anderson and T. Allen, Materials & design 28, (4), 2007 (1177).CrossRefGoogle Scholar
  12. 12.
    M. Nasrallah and D. Douglass, Journal of The Electrochemical Society 121, (2), 1974 (255).CrossRefGoogle Scholar
  13. 13.
    P.A. Mouche, Steam Oxidation of Fecral Coated Zircaloy-2. Ph.D. thesis, University of Illinois Urbana/Champaign (2016).Google Scholar
  14. 14.
    J. Q. Peng, Y. Chen, G. Q. Yan, M. Wu, L. J. Wang and J. S. Li, Rare Metals 35, (4), 2016 (325).CrossRefGoogle Scholar
  15. 15.
    B. Cox, in Advances in Corrosion Science and Technology (Springer, 1976), pp. 173–3910.Google Scholar
  16. 16.
    H. Porte, J. Schnizlein, R. Vogel and D. Fischer, Journal of the Electrochemical Society 107, (6), 1960 (506).CrossRefGoogle Scholar
  17. 17.
    A. Motta, M.G. da Silva, A. Yilmazbayhan, R. Comstock, Z. Cai, B. Lai, in Zirconium in the Nuclear Industry: 15th International Symposium (ASTM International, 2009).Google Scholar
  18. 18.
    A. Yilmazbayhan, E. Breval, A. T. Motta and R. J. Comstock, Journal of Nuclear Materials 349, (3), 2006 (265).CrossRefGoogle Scholar
  19. 19.
    Y. Sugizaki, S. Yamaguchi, S. Hashimoto, M. Hirabayashi and Y. Ishikawa, Journal of the Physical Society of Japan 54, (7), 1985 (2543).CrossRefGoogle Scholar
  20. 20.
    B. Paul Burton, A. van de Walle, H. T. Stokes, Journal of the Physical Society of Japan 81(1), 014004 (2011)Google Scholar
  21. 21.
    B. Holmberg and T. Dagerhamn, Acta Chemica Scandinavica 15, 1961 (919).CrossRefGoogle Scholar
  22. 22.
    S. Yamaguchi, Journal of the Physical Society of Japan 24, (4), 1968 (855).CrossRefGoogle Scholar
  23. 23.
    J. Bradbrook, G. Lorimer and N. Ridley, Journal of Nuclear Materials 42, (2), 1972 (142).CrossRefGoogle Scholar
  24. 24.
    Z. Zhao, M. Blat-Yrieix, J. Morniroli, A. Legris, L. Thuinet, Y. Kihn, A. Ambard, L. Legras, in Zirconium in the Nuclear Industry: 15th International Symposium (ASTM International, 2009).Google Scholar
  25. 25.
    S. García-Martín, M. Alario-Franco, D. Fagg, A. Feighery and J. Irvine, Chemistry of Materials 12, (6), 2000 (1729).CrossRefGoogle Scholar
  26. 26.
    L. Lanzani and M. Ruch, Journal of Nuclear Materials 324, (2–3), 2004 (165).CrossRefGoogle Scholar
  27. 27.
    A. T. Motta and L. Q. Chen, JOM 64, (12), 2012 (1403).CrossRefGoogle Scholar
  28. 28.
    R.N. Singh, P. Ståhle, L. Banks-Sills, M. Ristinmaa, S. Banerjee, in Defect and Diffusion Forum, Vol. 279 (Trans Tech Publ, 2008), pp. 105–110Google Scholar
  29. 29.
    E. Lacroix, A. Motta and J. Almer, Journal of Nuclear Materials 509, 2018 (162).CrossRefGoogle Scholar
  30. 30.
    A. Couet, A. T. Motta, A. Ambard and D. Livigni, Corrosion Science 119, 2017 (1).CrossRefGoogle Scholar
  31. 31.
    A. T. Motta, A. Couet and R. J. Comstock, Annual Review of Materials Research 45, 2015 (311).CrossRefGoogle Scholar
  32. 32.
    P. A. Mouche, Effects of Hydrogen Uptake and Yttrium Doping on the Oxidation of Zirconium–Yttrium Alloys. Ph.D. thesis, University of Illinois Urbana/Champaign (2018).Google Scholar
  33. 33.
    M. Steinbrück, N. Vér and M. Große, Oxidation of Metals 76, (3–4), 2011 (215).CrossRefGoogle Scholar
  34. 34.
    M. Steinbrück, M. Grosse, in Zirconium in the Nuclear Industry: 17th Volume (ASTM International, 2015)Google Scholar
  35. 35.
    M. Große, E. Lehmann, M. Steinbrück, G. Kühne and J. Stuckert, Journal of Nuclear Materials 385, (2), 2009 (339).CrossRefGoogle Scholar
  36. 36.
    M. Große, M. Steinbrueck, E. Lehmann and P. Vontobel, Oxidation of Metals 70, (3–4), 2008 (149).CrossRefGoogle Scholar
  37. 37.
    M. Grosse, M. Steinbrueck, B. Schillinger, A. Kaestner, in Zirconium in the Nuclear Industry: 18th International Symposium (ASTM International, 2018).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oak Ridge National Laboratory and University of Illinois Urbana/ChampaignOak RidgeUSA
  2. 2.Department of Nuclear, Plasma, and Radiological Engineering, 111B Talbot Laboratory MC 234University of Illinois Urbana/ChampaignUrbanaUSA

Personalised recommendations