Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 225–242 | Cite as

Effect of Silicon and Graphite Degeneration on High-Temperature Oxidation of Ductile Cast Irons in Open Air

  • Susana Méndez
  • María Ángeles Arenas
  • Andrea Niklas
  • Rodolfo González
  • Ana Conde
  • Jon Sertucha
  • Juan José de DamboreneaEmail author
Original Paper
  • 69 Downloads

Abstract

The use of high silicon ductile irons is increasing as they offer some advantages with respect to conventional pearlitic–ferritic grades such as high elongation at rupture for a given tensile strength value and a fully ferritic matrix. Besides addressing mechanical requirements, some castings must fulfil corrosion and high-temperature oxidation requisites. Two different ductile cast irons with silicon contents of 2.04 and 5.21 wt% were used so as to comparatively study their mechanical properties and high-temperature oxidation responses. The structure of both alloys contains nodular graphite and a fully ferritic matrix. Some samples of the alloy with 5.21 wt% silicon also contain abundant degenerated graphite which was identified as Chunky graphite. Oxidation resistance of both materials was evaluated by exposures to air at 650 °C for 720 h using a tubular furnace. The alloy with 5.21 wt% silicon showed an oxidation resistance about three times higher than the low silicon alloy. Although both alloys showed similar oxidation mechanisms, the oxidation scale formed on the high-silicon alloy stands out for having lower thickness, higher silicon content in the metal/oxide interface and more compact and adherent layers. Samples with Chunky graphite showed a similar evolution to those with graphite nodules, so no negative effect from this graphite degeneration on oxidation process was observed. The analyses performed by XRD revealed the presence of fayalite in the 5.21 wt% Si alloy, which is responsible for the better oxidation resistance.

Graphical Abstract

Keywords

Ductile cast iron High silicon Oxidation Chunky graphite 

References

  1. 1.
    G. Toktas, A. Toktas and M. Tayanc, Materials and Design 29, 1600–1608 (2008).  https://doi.org/10.1016/j.matdes.2007.10.001.CrossRefGoogle Scholar
  2. 2.
    N. S. Tiedje, Materials Science and Technology 26, 505–514 (2010).  https://doi.org/10.1179/026708310X12668415533649.CrossRefGoogle Scholar
  3. 3.
    R. Kallbörn, K. Hamberg, M. Wessén and L. E. Björkegren, Materials Science and Engineering A 413–414, 346–351 (2005).  https://doi.org/10.1016/j.msea.2005.08.210.CrossRefGoogle Scholar
  4. 4.
    M. Shirani and G. Härkegård, Engineering Failure Analysis 18, 12–24 (2011).  https://doi.org/10.1016/j.engfailanal.2010.07.001.CrossRefGoogle Scholar
  5. 5.
    C. Labrecque and M. Gagné, Canadian Metallurgical Quarterly 37, 343–378 (1998).  https://doi.org/10.1179/cmq.1998.37.5.343.Google Scholar
  6. 6.
    A. Suárez-Sanabria and J. Fernández-Carrasquilla, Revista de Metalurgia 42, 18–31 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Sancy, Y. Gourbeyre, E. M. M. Sutter and T. Tribollet, Corrosion Science 52, 1222–1227 (2010).  https://doi.org/10.1016/j.corsci.2009.12.026.CrossRefGoogle Scholar
  8. 8.
    M. A. Arenas, A. Niklas, A. Conde, S. Méndez, J. Sertucha, J. de Damborenea, Revista de Metalurgia 50 (2014). http://dx.doi.org/10.3989/revmetalm.032.
  9. 9.
    A. Ebel, S. Y. Brou, B. Malard, J. Lacaze, D. Monceau and L. Vaissière, Materials Science Forum 925, 353–360 (2018).  https://doi.org/10.4028/www.scientific.net/MSF.925.353.CrossRefGoogle Scholar
  10. 10.
    K.-A. Jafar and A.-A. Behnam, Journal of Iron and Steel Research, International 18, 34–39 (2011).  https://doi.org/10.1016/S1006-706X(11)60034-4.Google Scholar
  11. 11.
    R. González-Martínez, U. de la Torre, J. Lacaze and J. Sertucha, Materials Science and Engineering A 712, 794–802 (2018).  https://doi.org/10.1016/j.msea.2017.11.050.CrossRefGoogle Scholar
  12. 12.
    U. de la Torre, A. Loizaga, J. Lacaze and J. Sertucha, Materials Science and Technology 30, 1425–1431 (2014).  https://doi.org/10.1179/1743284713Y.0000000483.CrossRefGoogle Scholar
  13. 13.
    J. Lacaze, L. Magnusson-Åberg, J. Sertucha J, Review of microstructural features of chunky graphite in ductile cast irons. Proceedings of the Keith Millis symposium, Nashville, American Foundry Society (2013), pp. 360–368.Google Scholar
  14. 14.
    U. de la Torre, J. Lacaze and J. Sertucha, International Journal of Materials Research 107, 1041–1050 (2017).  https://doi.org/10.3139/146.111434.CrossRefGoogle Scholar
  15. 15.
    P. A. Schweitzer, Fundamentals of metallic corrosion: atmospheric and media corrosion of metals. Chapter 4, Corrosion of Cast Iron and Cast Steel (CRC Press, 2006).Google Scholar
  16. 16.
    Z. Glavas, A. Strkalj and A. Stojakovich, Metalurgija 55, 293–296 (2016).Google Scholar
  17. 17.
    W. Stets, H. Löblich, G. Gassner and P. Schumacher, International Journal of Metalcasting 8, 35–40 (2014).  https://doi.org/10.1007/BF03355580.CrossRefGoogle Scholar
  18. 18.
    R. González-Martínez, U. de la Torre, A. Ebel, J. Lacaze and J. Sertucha, Materials Science and Engineering A 712, 803–811 (2018).  https://doi.org/10.1016/j.msea.2017.11.051.CrossRefGoogle Scholar
  19. 19.
    A. Reynaud, Elsevier 3, 2010 (1737–1788).Google Scholar
  20. 20.
    A. K. Gupta, D. Boruah, N. Suresh, N. Kamal, A. K. Singh, International Journal of Engineering Research and Applications 6, 68–73 (2016) ISSN: 2248-9622.Google Scholar
  21. 21.
    P. M. Dardati, D. J. Celentano, L. A. Godoy, A. A. Chiarella and B. J. Schulz, International Journal of Cast Metals Research 22, 390–400 (2009).  https://doi.org/10.1179/174313309X436646.CrossRefGoogle Scholar
  22. 22.
    R. Källbom, K. Hamberg, L.-E. Björkegren, Chunky graphite in ductile iron castings. Proceedings of 67th World Foundry Congress, Harrogate, UK. 2006.Google Scholar
  23. 23.
    X. G. Diao, Z. L. Ning, F. Y. Cao, S. Z. Ren and J. F. Sun, Materials Science and Technology 27, 834–838 (2011).  https://doi.org/10.1179/026708309X12560332736557.CrossRefGoogle Scholar
  24. 24.
    A. Mourujärvi, K. Widell, T. Saukkonen and H. Hänninen, Fatigue and Fracture of Engineering Materials and Structures 32, 379–390 (2009).  https://doi.org/10.1111/j.1460-2695.2009.01337.x.CrossRefGoogle Scholar
  25. 25.
    P. Ferro, P. Lazzrin and F. Berto, Materials Science and Engineering A 554, 122–128 (2012).  https://doi.org/10.1016/j.msea.2012.06.024.CrossRefGoogle Scholar
  26. 26.
    J. Kaczorowski and K. Jozwiak, Journal of Failure Analysis and Prevention 13, 446–450 (2013).  https://doi.org/10.1007/s11668-013-9693-2.CrossRefGoogle Scholar
  27. 27.
    I. Svedung and N. G. Vannerberg, Corrosion Science 14, 391–399 (1974).CrossRefGoogle Scholar
  28. 28.
    M. Ekström, P. Szakalos and S. Jonsson, Oxidation of Metals 80, 455–466 (2013).  https://doi.org/10.1007/s11085-013-9389-8.CrossRefGoogle Scholar
  29. 29.
    M. M. P. Brady, G. Muralidharan, D. N. Leonard, J. A. Haynes, R. G. Weldon and R. D. England, Oxidation of Metals 82, 359–381 (2014).  https://doi.org/10.1007/s11085-014-9496-1.CrossRefGoogle Scholar
  30. 30.
    M.-B. Lin, C.-J. Wang and A. A. Volinsky, Oxidation of Metals 76, 161–168 (2011).  https://doi.org/10.1007/s11085-011-9244-8.CrossRefGoogle Scholar
  31. 31.
    F. Tholence and M. Norell, Oxidation of Metals 69, 13–36 (2008).CrossRefGoogle Scholar
  32. 32.
    Z. Ban, K. Bohnenkamp and H.-J. Engell, Corrosion Science 19, 283–293 (1979).CrossRefGoogle Scholar
  33. 33.
    C. R. Cvetnic, C. Ravindran and A. McLean, Canadian Metallurgical Quarterly 46, 75–88 (2007).CrossRefGoogle Scholar
  34. 34.
    A. Atkinson, Corrosion Science 22, 87–102 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Investigación y Desarrollo de Procesos MetalúrgicosIK4-AZTERLANDurangoSpain
  2. 2.Departamento de Ingeniería de Superficies, Corrosión y DurabilidadCentro Nacional de Investigaciones Metalúrgicas CENIM-CSICMadridSpain

Personalised recommendations