Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 95–112 | Cite as

Oxidation and Hot Corrosion Performance of NiCoCrAlY Coatings Fabricated Via Electrolytic Codeposition

  • Ying ZhangEmail author
  • Brian Bates
  • Jason Steward
  • Sebastien Dryepondt
Original Paper
  • 67 Downloads

Abstract

The oxidation and hot corrosion performance of NiCoCrAlY coatings fabricated via electrolytic codeposition was investigated. The cyclic oxidation behavior of NiCoCrAlY coatings on Ni-based superalloys was evaluated at 1000 and 1100 °C. Preliminary Type I hot corrosion testing was conducted to assess the hot corrosion resistance of these coatings in a Dean rig with flowing O2 + 0.1% SO2 gas. NiAl coatings synthesized by a non-contact pack cementation method were included in the oxidation and corrosion tests for comparison. The NiAl coatings exhibited excellent oxidation resistance; however, they showed very poor hot corrosion performance at 900 °C. The electro-codeposited NiCoCrAlY coatings demonstrated good overall resistance to both cyclic oxidation and hot corrosion and also showed better chemical/microstructural compatibility with the superalloy substrates.

Keywords

MCrAlY coating Oxidation Hot corrosion Electro-codeposition Plating 

Notes

Acknowledgements

The authors would like to thank GE Aviation and Rolls-Royce Corporation for supplying the superalloy substrates used in this study. The authors would also like to thank Jason Witman at Tennessee Technological University (TTU) for assistance with the experimental work. This research was financially supported by the Office of Naval Research through Grant No. N00014-14-1-0341 with Dr. David Shifler as the Technical Monitor.

References

  1. 1.
    G. W. Goward, Surface & Coatings Technology 108–109, 1998 (73).CrossRefGoogle Scholar
  2. 2.
    J. H. Wood and E. H. Goldman, in Superalloys II, eds. C. T. Sims, N. S. Stoloff and W. C. Hagel (Wiley, New York, NY, 1987), p. 359.Google Scholar
  3. 3.
    J. R. Nicholls, MRS Bulletin 28, 2003 (659).CrossRefGoogle Scholar
  4. 4.
    J. Foster, B. P. Cameron and J. A. Carew, Transactions of the IMF 63, 1985 (115).CrossRefGoogle Scholar
  5. 5.
    F. J. Honey, E. C. Kedward and V. Wride, Journal of Vacuum Science and Technology A 4, 1986 (2593).CrossRefGoogle Scholar
  6. 6.
    X. Lu, R. Zhu and Y. Her, Oxidation of Metals 43, 1995 (353).CrossRefGoogle Scholar
  7. 7.
    M.-P. Bacos, B. Girard, P. Josso and C. Rio, Surface & Coatings Technology 162, 2003 (248).CrossRefGoogle Scholar
  8. 8.
    R. Mévrel, Materials Science and Engineering A 120–121, 1989 (13).CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, JOM Journal of the Minerals Metals and Materials Society 67, 2015 (2599).CrossRefGoogle Scholar
  10. 10.
    B. L. Bates, L. Z. Zhang and Y. Zhang, Surface Engineering 31, 2015 (202).CrossRefGoogle Scholar
  11. 11.
    B. L. Bates, J. C. Witman and Y. Zhang, Materials and Manufacturing Processes 31, 2016 (1232).CrossRefGoogle Scholar
  12. 12.
    L. Z. Zhang, B. L. Bates and Y. Zhang, Surface Engineering 33, 2017 (136).CrossRefGoogle Scholar
  13. 13.
    M. S. Priest and Y. Zhang, Materials and Corrosion 66, 2015 (1111).CrossRefGoogle Scholar
  14. 14.
    W. Y. Lee, I. G. Wright, B. Pint, Y. Zhang and P. K. Liaw, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 29, 1998 (833).CrossRefGoogle Scholar
  15. 15.
    J. A. Haynes, B. A. Pint, K. L. More, Y. Zhang and I. G. Wright, Oxidation of Metals 58, 2002 (513).CrossRefGoogle Scholar
  16. 16.
    V. Deodeshmukh and B. Gleeson, Corrosion 2006, 2006 (1).Google Scholar
  17. 17.
    A. Vande Put, M. C. Lafont, D. Oquab, A. Raffaitin and D. Monceau, Surface & Coatings Technology 205, 2010 (717).CrossRefGoogle Scholar
  18. 18.
    B. M. Warnes, Surface & Coatings Technology 163, 2003 (106).CrossRefGoogle Scholar
  19. 19.
    R. Darolia, D. F. Lahrman and R. D. Field, Superalloys 1988, 1988 (255).Google Scholar
  20. 20.
    Z. Mutasim, J. Kimmel, and W. Brentnall, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers (1998), pp. V005T12A005–V005T12A005.Google Scholar
  21. 21.
    A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage and N. Hitchman, Journal of Thermal Spray Technology 17, 2008 (199).CrossRefGoogle Scholar
  22. 22.
    J. R. Nicholls, N. J. Simms and A. Encinas-Oropesa, Materials at High Temperatures 24, 2007 (149).CrossRefGoogle Scholar
  23. 23.
    G. W. Meetham, Materials Science and Technology 2, 1986 (290).CrossRefGoogle Scholar
  24. 24.
    S. R. J. Saunders and J. R. Nicholls, Thin Solid Films 119, 1984 (247).CrossRefGoogle Scholar
  25. 25.
    A. Raffaitin, D. Monceau, E. Andrieu and F. Crabos, Acta Materialia 54, 2006 (4473).CrossRefGoogle Scholar
  26. 26.
    A. Raffaitin, F. Crabos, E. Andrieu and D. Monceau, Surface & Coatings Technology 201, 2006 (3829).CrossRefGoogle Scholar
  27. 27.
    A. Vande Put, D. Oquab, E. Péré, A. Raffaitin and D. Monceau, Oxidation of Metals 75, 2011 (247).CrossRefGoogle Scholar
  28. 28.
    R. Goti, M. Bétaille-Francoual, E. Hourcastagné, B. Viguier and F. Crabos, Oxidation of Metals 81, 2014 (105).CrossRefGoogle Scholar
  29. 29.
    D. Monceau and D. Poquillon, Oxidation of Metals 61, 2004 (143).CrossRefGoogle Scholar
  30. 30.
    B. Baufeld and U. Schulz, Surface & Coatings Technology 201, 2006 (2667).CrossRefGoogle Scholar
  31. 31.
    T. J. Nijdam and W. G. Sloof, Surface & Coatings Technology 201, 2006 (3894).CrossRefGoogle Scholar
  32. 32.
    M. Matsumoto, T. Kato, K. Hayakawa, N. Yamaguchi, S. Kitaoka and H. Matsubara, Surface & Coatings Technology 202, 2008 (2743).CrossRefGoogle Scholar
  33. 33.
    J. L. Smialek, Surface & Coatings Technology 276, 2015 (31).CrossRefGoogle Scholar
  34. 34.
    H. M. Tawancy, A. I. Mohamed and N. M. Abbas, Journal Materials Science 8, 2003 (3797).CrossRefGoogle Scholar
  35. 35.
    A. Hesnawi, H. Li, Z. Zhou, S. Gong and H. Xu, Vacuum 81, 2007 (947).CrossRefGoogle Scholar
  36. 36.
    U. Schulz, M. Menzebach, C. Leyens and Y. Q. Yang, Surface & Coatings Technology 147, 2001 (117).CrossRefGoogle Scholar
  37. 37.
    R. Vaßen, G. Kerkhoff and D. Stöver, Materials Science and Engineering A 303, 2001 (100).CrossRefGoogle Scholar
  38. 38.
    R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren and X. H. Li, Surface & Coatings Technology 236, 2013 (230).CrossRefGoogle Scholar
  39. 39.
    W. Nowak, D. Naumenko, G. Mor, et al., Surface & Coatings Technology 260, 2014 (82).CrossRefGoogle Scholar
  40. 40.
    J. E. Restall, Superalloys 1984, 1984 (721).Google Scholar
  41. 41.
    R. A. Neff, G. B. Katz, B. Nagaraj, R. Tarvin, in ASME Turbo Expo 2004: Power for Land, Sea, and Air. American Society of Mechanical Engineers (2004), pp. 1801–1811.Google Scholar
  42. 42.
    R. D. Noebe, R. R. Bowman and M. V. Nathal, International Materials Reviews 38, 1993 (193).CrossRefGoogle Scholar
  43. 43.
    B. Grushko, W. Kowalski, D. Pavlyuchkov, B. Przepiórzyński and M. Surowiec, Journal of Alloys and Compounds 460, 2008 (299).CrossRefGoogle Scholar
  44. 44.
    J. Stringer, Annual Review of Materials Science 7, 1977 (477).CrossRefGoogle Scholar
  45. 45.
    R. A. Rapp and N. Otsuka, ECS Transactions 16, 2009 (271).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTennessee Technological UniversityCookevilleUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations