Advertisement

Oxidation of Metals

, Volume 91, Issue 1–2, pp 33–53 | Cite as

Kinetics of the High-Temperature Oxidation of Heat-Resistant Statically and Centrifugally Cast HP40NbTi Alloys

  • Sergey Yu. Kondrat’evEmail author
  • Grigoriy P. Anastasiadi
  • Alina V. Ptashnik
  • Sergey N. Petrov
Original Paper
  • 39 Downloads

Abstract

The high-temperature oxidation kinetics at 800 to 1200 °C of as-cast heat-resistant HP40NbTi alloys produced by either static or centrifugal casting were studied by optical microscopy, electron microscopy, electron probe microanalysis, X-ray mapping, and thermogravimetric analysis combined with differential scanning calorimetry. The oxidation behavior of the as-cast HP40NbTi alloys was found to be complex physiochemical processes that are largely determined by the degree of the phase dispersion within the alloy and also by the temperature and exposure time. The oxidation rates of the alloys produced by different casting methods differed significantly.

Graphical Abstract

Keywords

Superalloys Stainless steel High-temperature corrosion Scale structure 

References

  1. 1.
    M. Garbiak, W. Jasinski and B. Piekarski, Archives of Foundry Engineering 11, 2011 (47).Google Scholar
  2. 2.
    H. M. Tawancy, A. Ul-Hamid, A. I. Mohammed and N. M. Abbas, Materials and Design 28, 2007 (686).CrossRefGoogle Scholar
  3. 3.
    D. J. Tillack, J. E. Guthrie, Wrought and Cast Heat-Resistant Stainless Steels and Nickel Alloys for the Refining and Petrochemical Industries (Technical Series No. 10071), (Nickel Development Institute, Toronto, Canada, 1998).Google Scholar
  4. 4.
    L. Bonaccorsi, E. Guglielmino, R. Pino, C. Servetto and A. Sili, Engineering Failure Analysis 36, 2014 (65).CrossRefGoogle Scholar
  5. 5.
    A. Alvino, D. Lega, F. Giacobbe, V. Mazzocchi and A. Rinaldi, Engineering Failure Analysis 17, 2010 (1526).CrossRefGoogle Scholar
  6. 6.
    Z. Zhu, C. Cheng, J. Zhao and L. Wang, Engineering Failure Analysis 21, 2012 (59).CrossRefGoogle Scholar
  7. 7.
    S. Borjali, S. R. Allahkaram and H. Khosravi, Materials and Design 34, 2012 (65).CrossRefGoogle Scholar
  8. 8.
    A. Ul-Hamid, H. M. Tawancy, A.-R. I. Mohammed and N. M. Abbas, Engineering Failure Analysis 13, 2006 (1005).CrossRefGoogle Scholar
  9. 9.
    A. A. Kaya, P. Krauklis and D. J. Young, Materials Characterization 49, 2002 (11).CrossRefGoogle Scholar
  10. 10.
    A. A. Kaya, Materials Characterization 49, 2002 (23).CrossRefGoogle Scholar
  11. 11.
    L. H. De Almeida, A. F. Ribeiro and I. Le May, Materials Characterization 49, 2003 (219).CrossRefGoogle Scholar
  12. 12.
    A. I. Rudskoi, G. P. Anastasiadi, S. Y. Kondrat’ev, A. S. Oryshchenko and M. D. Fuks, Physics of Metals and Metallography 115, 2014 (1).CrossRefGoogle Scholar
  13. 13.
    L. S. Monobe and C. G. Schőn, Journal of Materials Research and Technology 2, 2013 (195).CrossRefGoogle Scholar
  14. 14.
    G. F. Vander Voort, G. M. Lucas and E. P. Manilova, in ASM Handbook, vol. 9, eds. J. R. Davis and Davis & Associates (Russell Township, ASM International, 2004), p. 820.Google Scholar
  15. 15.
    A. I. Rudskoy, A. S. Oryshchenko, S Yu Kondrat’ev, G. P. Anastasiadi and M. D. Fuks, Metal Science and Heat Treatment 56, 2014 (3).CrossRefGoogle Scholar
  16. 16.
    A. I. Rudskoy, S Yu Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko and M. D. Fuks, Metal Science and Heat Treatment 56, 2014 (124).CrossRefGoogle Scholar
  17. 17.
    R. Zapała and B. Kalandyk, Archives of Foundry Engineering 10, 2010 (217).Google Scholar
  18. 18.
    E. A. Kenik, P. J. Maziasz, R. W. Swindeman, J. Cervenka and D. May, Scripta Materialia 49, 2003 (117).CrossRefGoogle Scholar
  19. 19.
    A. I. Rudskoy, A. S. Oryshchenko, S Yu Kondrat’ev, G. P. Anastasiadi, M. D. Fuks and S. N. Petrov, Metal Science and Heat Treatment 55, 2013 (209).CrossRefGoogle Scholar
  20. 20.
    I. A. Sustaita-Torres, S. Haro-Rodrigues, M. P. Guerrero-Mata, M. De la Garza, E. Valdes, F. Deschaux-Beaume and R. Colas, Materials Chemistry and Physics 133, 2012 (1018).CrossRefGoogle Scholar
  21. 21.
    A. I. Rudskoy, S Yu Kondrat’ev, G. P. Anastasiadi, A. S. Oryshchenko, M. D. Fuks and S. N. Petrov, Metal Science and Heat Treatment 55, 2014 (517).CrossRefGoogle Scholar
  22. 22.
    Y. Jingbo, G. Yimin, Y. Fang, Y. Caiying, Y. Zhaozhong, Y. Dawei and M. Shengqiang, Materials Science and Engineering 529A, 2011 (361).Google Scholar
  23. 23.
    M. Garbiak and R. Chyliňska, Archives of Foundry Engineering 8, 2008 (27).Google Scholar
  24. 24.
    R. Voicu, E. Andrieu, D. Poquillon, J. Furtado and J. Lacaze, Materials Characterization 60, 2009 (1020).CrossRefGoogle Scholar
  25. 25.
    K. G. Buchanan and M. V. Kral, Metallurgical and Materials Transactions 43A, 2012 (1760).CrossRefGoogle Scholar
  26. 26.
    K. G. Buchanan, M. V. Kral and C. M. Bishop, Metallurgical and Materials Transactions 45A, 2014 (3373).CrossRefGoogle Scholar
  27. 27.
    S Yu Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi and S. N. Petrov, Metal Science and Heat Treatment 57, 2015 (402).CrossRefGoogle Scholar
  28. 28.
    S. Y. Kondrat’ev, V. S. Kraposhin, G. P. Anastasiadi and A. L. Talis, Acta Materialia 100, 2015 (275).CrossRefGoogle Scholar
  29. 29.
    F. C. Nunes, L. H. De Almeida, J. Dille, J.-L. Delplancke and I. Le May, Materials Characterization 58, 2007 (132).CrossRefGoogle Scholar
  30. 30.
    T. Sourmail, Materials Science and Technology 17, 2001 (1).CrossRefGoogle Scholar
  31. 31.
    B. Piekarski, Materials Characterization 47, 2001 (181).CrossRefGoogle Scholar
  32. 32.
    S. Y. Kondrat‘ev, G. P. Anastasiadi, S. N. Petrov and A. V. Ptashnik, Metallurgical and Materials Transactions 48A, 2017 (482).CrossRefGoogle Scholar
  33. 33.
    A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah and F. Habiby, Journal of Minerals and Materials Characterization and Engineering 7, 2008 (127).CrossRefGoogle Scholar
  34. 34.
    R. A. P. Ibanez, G. D. De Almeida Soares, L. H. De Almeida and I. Le May, Materials Characterization 30, 1993 (243).CrossRefGoogle Scholar
  35. 35.
    N. McIntyre, N. Chan and C. Chen, Oxidation of Metals 33, 1990 (458).CrossRefGoogle Scholar
  36. 36.
    G. P. Anastasiadi, S Yu Kondrat’ev and A. I. Rudskoy, Metal Science and Heat Treatment 56, 2014 (403).CrossRefGoogle Scholar
  37. 37.
    S Yu Kondrat’ev, G. P. Anastasiadi and A. I. Rudskoy, Metal Science and Heat Treatment 56, 2015 (531).CrossRefGoogle Scholar
  38. 38.
    R. F. Voitovich and É. A. Pugach, Powder Metallurgy and Metal Ceramics 12, 1973 (314).Google Scholar
  39. 39.
    V. B. Trindade, U. Krupp, B. Z. Hanjari, S. Yang and H.-J. Christ, Materials Research 8, 2005 (371).CrossRefGoogle Scholar
  40. 40.
    A. J. Markworth, Metallurgical Transactions A 8A, 1977 (2014).CrossRefGoogle Scholar
  41. 41.
    B. Gleeson, W. H. Cheung and D. J. Young, Corrosion Science 35, 1993 (923).CrossRefGoogle Scholar
  42. 42.
    H. T. Abuluwefa, R. I. L. Guthrie, S. Yue, M. Isac and J. Kozinski, in: 41st MWSP Conf. Proc., ISS, Vol. 37, p. 355 (1999).Google Scholar
  43. 43.
    M. P. Brady, B. Gleeson and I. G. Wright, JOM: The Journal of The Minerals, Metals & Materials Society (TMS) 52, 2000 (16).CrossRefGoogle Scholar
  44. 44.
    F. Gesmundo and B. Gleeson, Oxidation of Metals 44, 1995 (211).CrossRefGoogle Scholar
  45. 45.
    S Yu Kondrat’ev, E. V. Sviatysheva, G. P. Anastasiadi and S. N. Petrov, Acta Materialia 127, 2017 (267).CrossRefGoogle Scholar
  46. 46.
    Steel Castings Handbook. Supplement 9. High Alloy Data Sheets. Heat Series (Ohio: Steel Founder’s Society of America, 2004).Google Scholar
  47. 47.
    J. Yan, Y. Gao, L. Liang, Z. Ye, Y. Li, W. Chen and J. Zhang, Corrosion Science 53, 2011 (329).CrossRefGoogle Scholar
  48. 48.
    J. Yan, Y. Gao, Y. Shen, F. Yang, D. Yi, Z. Ye, L. Liang and Y. Du, Corrosion Science 53, 2011 (3588).CrossRefGoogle Scholar
  49. 49.
    L. Liu, Sh Wu, Y. Dong and Sh Lű, Corrosion Science 104, 2016 (236).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sergey Yu. Kondrat’ev
    • 1
    Email author
  • Grigoriy P. Anastasiadi
    • 1
  • Alina V. Ptashnik
    • 2
  • Sergey N. Petrov
    • 2
  1. 1.Technology and Research of Materials ChairPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussian Federation
  2. 2.Physical Materials Science LaboratoryCentral Research Institute of Structural Materials “Prometey”St. PetersburgRussian Federation

Personalised recommendations