Origins of Life and Evolution of Biospheres

, Volume 49, Issue 3, pp 187–196 | Cite as

Spontaneous Resolution and Super-coiling in Xerogels of the Products of Photo-Induced Formose Reaction

  • Sergey V. Stovbun
  • Anatoly M. Zanin
  • Mikhail V. Shashkov
  • Aleksey A. Skoblin
  • Dmitry V. ZlenkoEmail author
  • Vsevolod A. Tverdislov
  • Marya G. Mikhaleva
  • Oxana P. Taran
  • Valentin N. Parmon
Origins of Chirality


This work addresses the supramolecular self-organization in the xerogels of formose reaction products. The UV-induced formose reaction was held in over-saturated formaldehyde solutions at 70C without a catalyst. The solutions of the obtained carbohydrates were dried on a glass slide, and the obtained xerogels demonstrated a prominent optical activity, while the initial solutions were optically inactive. The xerogels contained highly elongated crystalline elements of a helical structure as well as the isometric ones. Thus xerogel formation was accompanied by a spontaneous resolution of enantiomers and separation of different-shaped supramolecular structures. The thick helices were twisted of thinner ones, while the latter were twisted of elementary structures having a diameter much smaller than 400 nm. Similar structural hierarchy is typical of biological macromolecules (DNA, proteins, and cellulose). Summarizing the obtained results, we proposed a hypothetical mechanism explaining the amplification of the initial enantiomeric excess, as well as chiral and chemical purification of the substances which were essential for the evolution of Life to start.


Self-assembly Formose reaction Supercoiling 



The work was supported by FASO Russia, theme number 45.9, 0082-2014-0011, AAAA-17-117111600093-8.


  1. Avalos M, Babiano R, Cintas P, Jimenez JL, Palacios JC (2010) Homochirality and chemical evolution: new vistas and reflections on recent models. Tetrahedron 21:1030–1040CrossRefGoogle Scholar
  2. Bolli M, Micural R, Eschenmoser A (1997) Pyranosyl-rna: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2’,3’-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality). Chem Biol 4(4):309–320CrossRefGoogle Scholar
  3. Breslow R (1959) On the mechanism of formose reaction. Tetrahedr Lett 21:22–26CrossRefGoogle Scholar
  4. Breslow R, Cheng ZL (2009) On the origin of terrestrial homochirality for nucleosides and amino acids. Proc Natl Acad Sci USA 106(23):9144–9146CrossRefGoogle Scholar
  5. Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP (2012) Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev 41(16):5459– 5472CrossRefGoogle Scholar
  6. Butlerow A (1861) Bildung einer zuckerartigen substanz durch synthese. Eur J Org Chem 120(3):295–298Google Scholar
  7. Decker P, Schweer H, Pohlamnn R (1982) Bioids: X. identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on ov-225. J Chrom A 224(2):281–291CrossRefGoogle Scholar
  8. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523CrossRefGoogle Scholar
  9. von Fehling HC (1848) Quantitative bestimmung des zuckers im harn. Archiv für physiologische Heilkunde 7:64–73Google Scholar
  10. Frank F (1953) On spontaneous asymmetric synthesis. Biochim Piophys Acta 11:459–463CrossRefGoogle Scholar
  11. Glavin DP, Dworkin JP (2009) Enrichment of the amino acid L-isovaline by aqueous alteration on CI and CM meteorite parent bodies. Proc Natl Acad Sci USA 106(14):5487–5492CrossRefGoogle Scholar
  12. Hummel J, Selbig J, Walther D, Kopka J (2007) The golm metabolome database: a database for gc-ms based metabolite profiling. In: Nielsen J, Jewett MC (eds) Metabolomics. A powerful tool in systems biology, vol 4. Springer, Berlin, pp 75–95Google Scholar
  13. Joyce G, Visser G, van Boeckel C, van Boom J, Orgel L, van Westrenen J (1984) Chiral selection in poly(C)-directed synthesis of poly(G). Nature 310:602–604CrossRefGoogle Scholar
  14. Kim HJ, Ricardo A, Illangkoon HI, Kim MJ, Carrigan MA, Frye F, Benner SA (2011) Synthesis of carbohydrates in mineral-guided prebiotic cycles. J Am Chem Soc 133(24):9457–9468CrossRefGoogle Scholar
  15. Kipping FS, Pope WJ (1898) Enantiomorphism. J Chem Soc Trans 73:606–617CrossRefGoogle Scholar
  16. Kissel P, Erni R, Schweizer WB, Rossell MD, King BT, Bauer T, Götzinger S, Schlüter AD, Sakamoto J (2012) A two-dimensional polymer prepared by organic synthesis. Nat Chem 4(4):287–291CrossRefGoogle Scholar
  17. Kitadai N, Maruyama S (2018) Origins of building blocks of life: a review. Geosci Front 9:1117–1153CrossRefGoogle Scholar
  18. Kleman M, Laverntovich O (2004) Soft matter physics. An introduction. Springer, New YorkCrossRefGoogle Scholar
  19. Kondepudi DK, Kaufman RJ, Sing N (1990) Chiral symmetry breaking in sodium chlorate crystallizaton. Science 250(4983):975–976CrossRefGoogle Scholar
  20. Kuhn H (2008) Origin of life — symmetry breaking in the universe: emergence of homochirality. Curr Op Coll Int Sci 13(1–2):3–11CrossRefGoogle Scholar
  21. Mauksch M, Tsogoeva SB, Wei S, Martynova IM (2007) Demonstration of spontaneous chiral symmetry breaking in asymmetric mannich and aldol reactions. Chirality 19:816–825CrossRefGoogle Scholar
  22. Mauksch M, Wei S, Freund M, Zamfir A, Tsogoeva SB (2009) Spontaneous mirror symmetry breaking in the aldol reaction and its potential relevance in prebiotic chemistry. Orig Life Evol Biosph 40:79–91CrossRefGoogle Scholar
  23. Nicolis G, Prigogine I (1981) Symmetry breaking and pattern selection systems in far-from-equilibrium. Proc Natl Acad Sci USA 78(2):659–663CrossRefGoogle Scholar
  24. Nikolsky SN, Zlenko DV, Melnikov VP, Stovbun SV (2019) The fbrils untwisting limits the rate of cellulose nitration process. Carbohydr Polym 204:232–237CrossRefGoogle Scholar
  25. Northrup AB, Mangion IK, Hettche F, MacMillan DW (2004) Enantioselective organocatalytic direct aldol reactions of α-oxyaldehydes: step one in a two-step synthesis of carbohydrates. Angew Chem Int Ed 43:2152–2154CrossRefGoogle Scholar
  26. Orgel LE (2004) Prebiotic chemistry and the origin of the rna world. Crit Rev Biochem Mol Biol 39:99–123CrossRefGoogle Scholar
  27. Pescitelli G, Bari LD, Berova N (2014) Application of electronic circular dichroism in the study of supramolecular systems. Chem Soc Rev 43(15):5311–5233CrossRefGoogle Scholar
  28. Pizzarello S, Weber AL (2004) Prebiotic amino acids as asymmetric catalysts. Science 303(5661):1151CrossRefGoogle Scholar
  29. Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nature 4(11):895–899Google Scholar
  30. Schwartz AW (2007) Intractable mixtures and the origin of life. Chem Biodivers 4:656–664CrossRefGoogle Scholar
  31. Shigemasa Y, Matsuda Y, Sakazawa C, Matsuura T (1977) Formose reactions. ii. the photochemical formose reaction. Bull Chem Soc Japan 50(1):222–226CrossRefGoogle Scholar
  32. Snytnikova OA, Simonov AN, Pestunov OP, Parmon VN, Tsentalovich YP (2006) Study of the photoinduced formose reaction by flash and stationary photolysis. Mendeleev Commun 16(1):9–11CrossRefGoogle Scholar
  33. Srisanga S, ter Horst JH (2010) Racemic compound, conglomerate, or solid solution: phase diagram screening of chiral compounds. Cryst Growth Des 10(4):1808–1812CrossRefGoogle Scholar
  34. Stovbun S, Skoblin A, Mikhailov A, Grishin M, Shub B, Zanin A, Shashkin D (2012) Experimental investigation of anisometric chiral phase xerogel. Rus J Phys Chem B 7(9–10):531–538Google Scholar
  35. Stovbun SV, Skoblin AA, Zlenko DV (2018) Self assembly and gelation in solutions of chiral n-trifluoroacetylated α-aminoalcohols. Chem Phys 508:34–44CrossRefGoogle Scholar
  36. Sweeley C, Bentley R, Makita M, Wells W (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85 (16):2497–2507CrossRefGoogle Scholar
  37. Tverdislov VA, Malyshko E, Il’chenko S, Zhulyabina O, Yakovenko L (2017) A periodic system of chiral structures in molecular biology. Biophysics 62(3):331–341CrossRefGoogle Scholar
  38. Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Chem Rev Lett 94(6):065504CrossRefGoogle Scholar
  39. Viedma C (2007) Chiral symmetry breaking and complete chiral purity by thermodynamic-kinetic feedback near equilibrium: implications for the origin of biochirality. Astrobiol 7(2):312–319CrossRefGoogle Scholar
  40. Weast RC (1974) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, ClevelandGoogle Scholar
  41. Zlenko DV, Zanin AM, Skoblin AA, Tverdislov VA, Stovbun SV (2019) Spontaneous resolution in racemic solutions of N-trifluoroacetylated α-aminoalcohols. Mol Struct 1183:8–13CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sergey V. Stovbun
    • 1
  • Anatoly M. Zanin
    • 1
  • Mikhail V. Shashkov
    • 2
    • 3
  • Aleksey A. Skoblin
    • 1
  • Dmitry V. Zlenko
    • 1
    • 4
    Email author
  • Vsevolod A. Tverdislov
    • 5
  • Marya G. Mikhaleva
    • 1
  • Oxana P. Taran
    • 2
    • 3
  • Valentin N. Parmon
    • 2
    • 3
    • 6
  1. 1.N.N. Semenov Institute of Chemical Physics, RASMoscowRussia
  2. 2.G.K. Boreskov Institute of Catalysis SB RASNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Faculty of BiologyM.V. Lomonosov Moscow State UniversityMoscowRussia
  5. 5.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  6. 6.Tomsk State UniversityTomskRussia

Personalised recommendations