Origins of Life and Evolution of Biospheres

, Volume 49, Issue 3, pp 163–185 | Cite as

Interactions of Amino Acids and Aminoxazole Derivatives: Cocrystal Formation and Prebiotic Implications Enabled by Computational Analysis

  • Nieves LavadoEmail author
  • Juan García de la ConcepciónEmail author
  • Reyes Babiano
  • Pedro Cintas
  • Mark E. Light
Theoretical Paper


In line with the postulated intermediacy of aminoxazoles derived from small sugars toward the direct assembly of nucleoside precursors, we show here a potential prebiotic scenario where aminoxazolines might have also played further roles as complexing and/or sequestering agents of other primeval blocks, namely amino acids. To this end, a bis-aminoxazoline derivative, generated from dihydroxyacetone and cyanamide, gives rise to stable co-crystal forms with dicarboxylic amino acids (Asp and Glu), while ionic interactions owing to proton transfer are inferred from spectroscopic data in aqueous solution. The structure of a 1:2 aminoxazoline: aspartic acid complex, discussed in detail, was elucidated by X-ray diffractometry. Optimized geometries of such ionic structures with bulk aqueous solvation were assessed by DFT calculations, which disclose preferential arrangements that validate the experimental data. Peripherally, we were able to detect in a few cases amino acid dimerization (i.e. dipeptide formation) after prolonged incubation with the bis-aminoxazole derivative. A mechanistic simulation aided by computation provides some predictive conclusions for future explorations and catalytic design.


Prebiotic chemistry Amino acids Aminoxazole chemistry Reaction mechanism Dipeptide 



This work was supported by Junta de Extremadura and Fondo Europeo de Desarrollo Regional (Grants IB16167 and GR18015). We also gratefully acknowledge the Cénits/COMPUTAEX Foundation for providing computing time on the LUSITANIA Supercomputer.

Supplementary material

11084_2019_9582_MOESM1_ESM.docx (3.1 mb)
ESM 1 (DOCX 3152 kb)


  1. Aakeröy CB, Bahra GS, Brown CR, Hitchcock PB, Patell Y, Seddon K (2008) L-proline 2,5-dihydroxybenzoic acid (1/1): a zwitterion co-crystal. Acta Chem Scand 49:762–767. CrossRefGoogle Scholar
  2. Anastasi C, Crowe MA, Powner MW, Sutherland JD (2006) Direct assembly of nucleoside precursors from two- and three-carbon units. Angew Chem Int Ed 45:6176–6179. CrossRefGoogle Scholar
  3. Berger M, Schmidtchen FP (1999) Zwitterionic guanidinium compounds serve as electroneutral anion hosts. J Am Chem Soc 121:9986–9993. CrossRefGoogle Scholar
  4. Blondeau P, Segura M, Pérez-Fernández R, De Mendoza J (2007) Molecular recognition of oxoanions based on guanidinium receptors. Chem Soc Rev 36:198–210. CrossRefPubMedGoogle Scholar
  5. Borsenberger V, Crowe MA, Lehbauer J, Raftery J, Helliwell M, Bhutia K, Cox T, Sutherland JD (2004) Exploratory studies to investigate a linked prebiotic origin of RNA and coded peptides. Chem Biodivers 1:203–246. CrossRefPubMedGoogle Scholar
  6. Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cremer D, Pople JA (1975) A general definition of ring puckering coordinates. J Am Chem Soc 97:1354–1358. CrossRefGoogle Scholar
  8. Danger G, Plasson R, Pascal R (2012) Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 41:5416–5429. CrossRefPubMedGoogle Scholar
  9. Das B, Srivastava HK (2017) Influence of the local chemical environment in the formation of multicomponent crystals of L-tryptophan with N-heterocyclic carboxylic acids: unusual formation of double zwitterions. Cryst Growth Des 17:3796–3805. CrossRefGoogle Scholar
  10. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728.
  11. Eschenmoser A (2011) Etiology of potentially primordial biomolecular structures: from vitamin B 12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew Chem Int Ed 50:12412–12472. CrossRefGoogle Scholar
  12. Etter MC, MacDonald JC, Bernstein J (1990) Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystal B46:256–262. CrossRefGoogle Scholar
  13. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) Self-consistent molecular orbital methods. XXIII A polarization-type basis set for second-row elements J Chem Phys 77:3654–3665. CrossRefGoogle Scholar
  14. Frisch MJ, Trucks GW, Schlegel HB et al. (2009) Gaussian 09. Revision D.01. Gaussian, Inc, Wallingford, CT, USAGoogle Scholar
  15. Gordon MS (1980) The isomers of silacyclopropane. Chem Phys Lett 76:163–168. CrossRefGoogle Scholar
  16. Grouiller A, Mackenzie G, Najib B, Shaw G, Ewing D (1988) A novel stereospecific synthesis of 5-amino-1-β-D-fructofuranosylimidazole-4-carboxamide. J Chem Soc Chem Commun:671–672.
  17. Halim MA, Shaw DM, Poirier RA (2010) Medium effect on the equilibrium geometries, vibrational frequencies and solvation energies of sulfanilamide. J Mol Struct (THEOCHEM) 960:63–72. CrossRefGoogle Scholar
  18. Hall SR, McMahon B (2006) International tables for crystallography vol G: definition and exchange of crystallographic data. International union of crystallography. Wiley, New YorkGoogle Scholar
  19. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213–222. CrossRefGoogle Scholar
  20. Hawker JR Jr, Oró J (1981) Cyanamide mediated syntheses of peptides containing histidine and hydrophobic amino acids. J Mol Evol 17:285–294. CrossRefPubMedGoogle Scholar
  21. Hein JE, Tse E, Blackmond DG (2011) A route to enantiopure RNA precursors from nearly racemic starting materials. Nat Chem 3:704–706. CrossRefPubMedGoogle Scholar
  22. Julian RR, Myung S, Clemmer DE (2005) Do homochiral aggregates have an entropic advantage? J Phys Chem B 109:440–444. CrossRefPubMedGoogle Scholar
  23. Kovács J, Pintér I, Köll P (1995) Direct transformation of D-idose and D-altrose with potassium cyanate into cyclic carbamates of derived glycosylamines. Carbohydr Res 272:255–262. CrossRefGoogle Scholar
  24. Krishnamurthy R, Arrhenius G, Eschenmoser A (1999) Formation of glycolaldehyde phosphate from glycolaldehyde in aqueous solution. Orig Life Evol Biosph 29:333–354. CrossRefPubMedGoogle Scholar
  25. Kubik S (2017) Anion recognition in aqueous media by cyclopeptides and other synthetic receptors. Acc Chem Res 50:2870–2878. CrossRefPubMedGoogle Scholar
  26. Marenich AV, Cramer CJ, Truhlar DG (2009a) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:4538–4543. CrossRefPubMedGoogle Scholar
  27. Marenich AV, Cramer CJ, Truhlar DG (2009b) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:6378–6396. CrossRefGoogle Scholar
  28. Müller D, Pitsch S, Kittaka A, Wagner E, Wintner CE, Eschenmoser A, Ohlofjgewidmet G (1990) Chemie von α-aminonitrilen. Aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die reaktionshauptprodukte. Helv Chim Acta 73:1410–1468. CrossRefGoogle Scholar
  29. Parker ET, Zhou M, Burton AS, Glavin DP, Dworkin JP, Krishnamurthy R, Fernandez FM, Bada J (2014) A plausible simultaneous synthesis of amino acids and simple peptides on the primordial earth. Angew Chem Int Ed 53:8132–8136. CrossRefGoogle Scholar
  30. Pascal R, Boiteau L, Commeyras A (2005) From the prebiotic synthesis of α-amino acids towards a primitive translation apparatus for the synthesis of peptides. Prebiotic chemistry, Top Curr Chem 259:69–122CrossRefGoogle Scholar
  31. Patel BH, Percivalle C, Ritson DJ, Duffy CD, Sutherland JD (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat Chem 7:301–307. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Plasson R, Bersini H, Commeyras A (2004) Recycling frank: spontaneous emergence of homochirality in noncatalytic systems. Proc Natl Acad Sci U S A 101:16733–16738. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242. CrossRefPubMedGoogle Scholar
  34. Powner MW, Sutherland JD, Szostak JW (2010) Chemoselective multicomponent one-pot assembly of purine precursors in water. J Am Chem Soc 132:16677–16688. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Powner MW, Zheng SL, Szostak JW (2012) Multicomponent assembly of proposed DNA precursors in water. J Am Chem Soc 134:13889–13895. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pressman A, Blanco C, Chen IA (2015) The RNA world as a model system to study the origin of life. Curr Biol 25:R953–R963CrossRefGoogle Scholar
  37. Reiner H, Plankensteiner K, Fitz D, Rode BM (2006) The possible influence of L-histidine on the origin of the first peptides on the primordial earth. Chem Biodivers 3:611–621. CrossRefPubMedGoogle Scholar
  38. Ribeiro RF, Marenich AV, Cramer CJ, Truhlar DG (2010) Prediction of SAMPL2 aqueous solvation free energies and tautomeric ratios using the SM8, SM8AD, and SMD solvation models. J Comput Aided Mol Des 24:317–333. CrossRefPubMedGoogle Scholar
  39. Ritson D, Sutherland JD (2012) Prebiotic synthesis of simple sugars by photoredox systems chemistry. Nat Chem 4:895–899. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rode BM (1999) Peptides and the origin of life. Peptides 20:773–786CrossRefGoogle Scholar
  41. Rode BM, Schwendinger MG (1990) Copper-catalyzed amino acid condensation in water-a simple possible way of prebiotic peptide formation. Orig Life Evol Biosph 20:401–410. CrossRefGoogle Scholar
  42. Ruiz-Mirazo K, Briones C, De La Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366. CrossRefPubMedGoogle Scholar
  43. Saielli G (2010) Differential solvation free energies of oxonium and ammonium ions: insights from quantum chemical calculations. J Phys Chem A 114:7261–7265. CrossRefPubMedGoogle Scholar
  44. Saul R, Kern T, Kopf J, Pintér I, Köll P (2000) Reaction of 1,3-disubstituted acetone derivatives with pseudohalides: a simple approach to spiro[4.4]nonane-type bis-oxazolidines and -imidazolidines (bicyclic carbamates, thiocarbamates, ureas, and thioureas). Eur J Org Chem:205–209Google Scholar
  45. Schwartz AW (2007) Intractable mixtures and the origin of life. Chem Biodivers 4:656–664CrossRefGoogle Scholar
  46. Schwartz AW (2013) Evaluating the plausibility of prebiotic multistage syntheses. Astrobiology 13:784–789. CrossRefPubMedGoogle Scholar
  47. Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126:9578–9583. CrossRefPubMedGoogle Scholar
  48. Steinman G, Lemmon RM, Calvin M (1964) Cyanamide: a possible key compound in chemical evolution. Proc Natl Acad Sci U S A 52:27–30. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Surov AO, Voronin AP, Vener MV, Churakov AV, Perlovich GL (2018) Specific features of supramolecular organisation and hydrogen bonding in proline cocrystals: a case study of fenamates and diclofenac. CrystEngComm 20:6970–6981. CrossRefGoogle Scholar
  50. Tilborg A, Norberg B, Wouters J (2014) Pharmaceutical salts and cocrystals involving amino acids: a brief structural overview of the state-of-art. Eur J Med Chem 74:411–426. CrossRefPubMedGoogle Scholar
  51. Weissbuch I, Illos RA, Bolbach G, Lahav M (2009) Racemic β-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry. Acc Chem Res 42:1128–1140. CrossRefPubMedGoogle Scholar
  52. Weissbuch I, Leiserowitz L, Lahav M (2011) Achiral organic, inorganic, and metal crystals as auxiliaries for asymmetric transformations. Isr J Chem 51:1017–1033. CrossRefGoogle Scholar
  53. Yaylayan VA, Harty-Majors S, Ismail AA (1999) Investigation of DL-glyceraldehyde-dihydroxyacetone interconversion by FTIR spectroscopy. Carbohydr Res 318:20–25CrossRefGoogle Scholar
  54. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Accounts 120:215–241. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias-UEXBadajozSpain
  2. 2.Department of Chemistry, Faculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonUK

Personalised recommendations