Advertisement

Pyrite and Organic Compounds Coexisting in Intrusive Mafic Xenoliths (Hyblean Plateau, Sicily): Implications for Subsurface Abiogenesis

  • Vittorio ScribanoEmail author
  • Sergei K. Simakov
  • Claudio Finocchiaro
  • Alessandra Correale
  • Salvatore Scirè
Geochemistry, Prebiotic Chemistry

Abstract

Pyrite and organic matter closely coexist in some hydrothermally-altered gabbroic xenoliths from the Hyblean Plateau, Sicily. The representative sample consists of plagioclase, Fe-oxides, clinopyroxene, pyrite and minor amounts of many other minerals. Plagioclase displays incipient albitization, clinopyroxene is deeply corroded. Pyrite grains are widely replaced by spongy-textured magnetite, which locally hosts Ca-(and Fe-)sulfate micrograins and blebs of condensed organic matter. Whole-rock trace element distribution evidences that incompatible elements, particularly the fluid-mobile Ba, U and Pb, are significantly enriched with respect to N-MORB values. The mineralogical and geochemical characteristics of the sample, and its U-Pb zircon age of 216.9 ± 6.7 MA, conform to the xenolith-based viewpoint that the unexposed Hyblean basement is a relict of the Ionian Tethys lithospheric domain, mostly consisting of abyssal-type serpentinized peridotites with small gabbroic intrusions. Circulating hydrothermal fluids there favored the formation of hydrocarbons trough Fischer-Tropsch-type organic synthesis, giving also rise to sulfidization episodes. Subsequent variations in temperature and redox conditions of the system induced partial de-sulfidization, Fe-oxides precipitation and sulfate-forming reactions, also promoting poly-condensation and aromatization of the already-formed hydrocarbons. Here we show organic matter adhering to a crystal face of a microscopic pyrite grain. Pyrite surfaces, as abiotic analogues of enzymes, can adsorb and concentrate organic molecules, also acting as catalysts for a broad range of proto-biochemical reactions. The present data therefore may support established abiogenesis models suggesting that pyrite surfaces carried out primitive metabolic cycles in suitable environments of the early Earth, such as endolithic recesses in mafic rocks permeated by hydrothermal fluids.

Keywords

Sicily Xenoliths Hydrothermal system Pyrite FTT synthesis Abiogenesis 

Notes

Acknowledgements

We would like to thank Massimo Tiepolo for having provided in-situ zircon U-Pb dating. Paolo Mazzoleni and Germana Barone kindly let us to use the micro-Raman equipment at Catania University.

Research Funding

Università di Catania, Piano per la ricerca 2016–2018, II annualità (to VS).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Andersen SI, Speight JG (2001) Petroleum resins: Separation character and role in petroleum. Petrol Sci Technol 19:1–34.  https://doi.org/10.1081/LFT-100001223
  2. Andreani M, Escartin J, Delacour A, Ildefonse B, Godard M, Dyment J, Fallick AE, Fouquet Y (2014) Tectonic structure lithology and hydrothermal signature of the rainbow massif (mid-Atlantic ridge 36 140N). Geochem Geophys 15:3543–3571.  https://doi.org/10.1002/2014GC005269
  3. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography mineral chemistry and petrophysics of serpentinites from MAR 15°N ( ODP Leg 209 Site 1274 ). Geophys Res Lett 33:L1330633:4–7.  https://doi.org/10.1029/2006GL025681 CrossRefGoogle Scholar
  4. Barriga FJAS (1990) Metallogenesis in the Iberian Pyrite Belt. In: Eds DRD, Garcia M (eds) Pre- Mesozoic Geology of Iberia. Springer-Verlag, Berlin, pp 369–379CrossRefGoogle Scholar
  5. Bebié J, Schoonen MAA (2000) Pyrite surface interaction with selected organic aqueous species under anoxic conditions. Geochem Trans 8:1–7.  https://doi.org/10.1039/b005581f CrossRefGoogle Scholar
  6. Bianchi F, Carbone S, Grasso M, Invernizzi G, Lentini F, Longaretti G, Merlini S, Mostardini F (1987) Sicilia orientale: pro lo geo- logico Nebrodi-Iblei. Mem Soc Geolol It 38:429–458Google Scholar
  7. Bibring J-P, Arvidson RE, Gendrin A, Gondet B, Langevin Y, Le Mouelic S, Mangold N, Morris RV, Mustard JF, Poulet F, Quantin C, Sotin C (2007) Coupled ferric oxides and sulfates on the Martian surface. Science 317:1206–1210CrossRefPubMedGoogle Scholar
  8. Blöchl E, Keller M, Wächtershäuser G, Stetter KO (1992) Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc Natl Acad Sci U S A 89:8117–8120CrossRefPubMedPubMedCentralGoogle Scholar
  9. Borda MJ, Elsetinow AR, Strongin DR, Schoonen MA (2003) A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim Cosmochim Acta 67:935–939CrossRefGoogle Scholar
  10. Brazelton WJ, Mehta MP, Kelley DS, Baross JA (2011) Physiological differentiation within a single-species biofilm fueled by serpentinization. mBio 2:127–111.  https://doi.org/10.1128/mBio00127-11
  11. Bromfield TC, Coville NJ (1999) The effect of sulfide ions on a precipitated iron Fischer–Tropsch catalyst. Appl Catal A 186:297–307CrossRefGoogle Scholar
  12. Busemann H, CMO’D A, Nittler LR (2007) Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit Planet Sci 42:1387–1416CrossRefGoogle Scholar
  13. Butler I, Rickard D (2000) Framboidal pyrite: Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim Cosmochim Acta 64:2665–2672CrossRefGoogle Scholar
  14. Caldeira CL, VST C, Osseo-Asare K (2009) The role of carbonate ions in pyrite oxidation in aqueous systems. Geochim Cosmochim Acta 74:1777–1789.  https://doi.org/10.1016/jgca200912014 CrossRefGoogle Scholar
  15. Calemma V, Iwanski P, Nali M, Scotti R, Montanari L (1995) Structural characterization of asphaltenes of different origins. Energ Fuel 9:225–230.  https://doi.org/10.1021/ef00050a004 CrossRefGoogle Scholar
  16. Cannat M, Fontaine F, Escartín J (2010) Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. In: Murton BJ RPADCWDJ (ed) Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Am Geophys Union Washington DC.  https://doi.org/10.1029/2008GM000760
  17. Carbone S, Lentini F (1981) Caratteri deposizionali delle vulcaniti del Miocene superiore negli Iblei (Sicilia Sud-Orientale). Geol Romana 20:79–101Google Scholar
  18. Catalano R, Franchino A, Merlini S, Sulli A (2000) A crustal section from the eastern Algeria basin to the Ionian Ocean (Central Mediterranean). Mem Soc Geol It 55:71–85Google Scholar
  19. Charlou J-L, Donval JP, Fouquet Y, Jean-Baptiste F, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the rainbow hy- drothermal field (36°14′N MAR). Chem Geol 191:345–359CrossRefGoogle Scholar
  20. Chaumette P, Verdon C, Boucot P (1995) Influence of the hydrocarbons distribution on the heat produced during Fischer–Tropsch synthesis. Top Catal 2:301–311.  https://doi.org/10.1007/BF01491974 CrossRefGoogle Scholar
  21. Chernyshova IV, Hochella MF, Madden A S (2007) Size-dependent structural transformations of hematite nanoparticles 1 phase transition. Phys Chem Chem Phys 9(14):91736–1750.  https://doi.org/10.1039/b618790k
  22. Ciliberto E, Crisafulli C, Manuella FC, Samperi F, Scirè S, Scribano V, Viccaro M, Viscuso E (2009) Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes Sicily: genesis in a serpentinite hydrothermal system. Chem Geol 258:258–268.  https://doi.org/10.1016/jchemgeo200810029 CrossRefGoogle Scholar
  23. Cloutis E, Szymanski P, Applin D, Goltz D (2016) Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy. Icarus 274:211–230.  https://doi.org/10.1016/jicarus201603023 CrossRefGoogle Scholar
  24. Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma AY, Yoder HS Jr (2000) Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340CrossRefPubMedGoogle Scholar
  25. Cody GD, Boctor NZ, Brandes JA, Filley TR, Hazen RM (2004) Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim Cosmochim Acta 68:2185–2196.  https://doi.org/10.1016/jgca200311020 CrossRefGoogle Scholar
  26. de Faria DLA, Venâncio Silva S, de Oliveira MT (1996) Raman Microspectroscopy of Some Iron Oxides and Oxyhydroxides. J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  27. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O'Neil J, Little CTS (2017) Evidence for early life in Earth's oldest hydrothermal vent precipitates. Nature 543:60–64.  https://doi.org/10.1038/nature21377 CrossRefPubMedGoogle Scholar
  28. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic–compounds. John Wiley and Sons, New YorkGoogle Scholar
  29. Endo Y, Sunagawa I (1973) Positive and negative striations in pyrite. Am Mineral 58:930–935Google Scholar
  30. Etiope G, Schoell M (2014) Abiotic gas: atypical but not rare. Elements 10:291–296CrossRefGoogle Scholar
  31. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506CrossRefGoogle Scholar
  32. Ferrari AC (2001) A model to interpret the Raman spectra of disordered amorphous and nanostructured carbons materials. Res Soc Symp Proc 675:1–12CrossRefGoogle Scholar
  33. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev 61:14095–14107.  https://doi.org/10.1103/physrevb6114095 CrossRefGoogle Scholar
  34. Ferris JP, Hill AR Jr, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381(6577):59–61CrossRefPubMedGoogle Scholar
  35. Firstova A, Stepanova T, Cherkashov G, Goncharov A, Babaeva S (2016) Composition and formation of gabbro-peridotite hosted seafloor massive sulfide deposits from the Ashadze-1 hydrothermal field, mid-Atlantic ridge. Minerals 6(19).  https://doi.org/10.3390/min6010019
  36. Foustoukos DI, Seyfried WE Jr (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science 304:1002–1005CrossRefPubMedGoogle Scholar
  37. Frost RB, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368CrossRefGoogle Scholar
  38. Fu Q, Sherwood Lollar B, Horita J, Lacrampe-Couloume G, Seyfried WE Jr (2007) Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochim Cosmochimi Acta 71:1982–1998CrossRefGoogle Scholar
  39. Gasparov LV, Tanner DB, Romero DB, Berger H, Margaritondo G, Forro L (2000) Infrared and Raman studies of the Verwey transition in magnetite. Phys Rev B Condens Matter Mater Phys 62:7939–7944CrossRefGoogle Scholar
  40. German CR, Lin J, Parsons L (2004) Mid-Ocean ridges hydrothermal interactions between the lithosphere and oceans. Geophys Monogr 148. Am Geophys union, Washington DC, 318 pp.Google Scholar
  41. Giampiccolo E, Brancato A, Manuella FC, Carbone S, Gresta S, Scribano V (2017) New evidence for the serpentinization of the Palaeozoic basement of southeastern Sicily from joint 3-D seismic velocity and attenuation tomography. Geophys J Int 211:1375–1395CrossRefGoogle Scholar
  42. Gold T (1999) The deep hot biosphere. Springer, New York, p 243.  https://doi.org/10.1007/978-1-4612-1400-7
  43. Gremlich H-U, Yang B (2000) Infrared and Raman spectroscopy of biological materials. Practical spectroscopy series 24, CRC press 600 ppGoogle Scholar
  44. Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30° N MAR). Geochem Geophys Geosyst 9:Q08012.  https://doi.org/10.1029/2008GC002063 CrossRefGoogle Scholar
  45. Guevremont JM, Strongin DR, Schoonen MAA (1998) Thermal chemistry of H2S and H2O on the (100) plane of pyrite: unique reactivity of defect sites. Am Mineral 3:1246–1255CrossRefGoogle Scholar
  46. Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177(3):941–948.  https://doi.org/10.1111/j1365-246X200904122x
  47. Hashmi SM, Firoozabadi A (2013) Self-assembly of resins and asphaltenes facilitates asphaltene dissolution by an organic acid journal of colloid and Interface. Science 394:115–123.  https://doi.org/10.1016/jjcis201211069 CrossRefGoogle Scholar
  48. Hazen RM, Sholl DS (2003) Chiral selection on inorganic crystalline surfaces. Nat Mater 2:367–374CrossRefPubMedGoogle Scholar
  49. Hazen RM, Sverjensky DA (2010) Mineral Surfaces Geochemical Complexities and the Origins of Life. CSH Perspect Biol 2(5).  https://doi.org/10.1101/cshperspecta002162
  50. Heinen W, Lauwers A-M (1996) Organic sulfur compounds resulting from the interaction of iron sulfide hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26:131–150CrossRefPubMedGoogle Scholar
  51. Herbert FW, Krishnamoorthy A, Ma W, Van Vliet KJ, Yildiz B (2014) Dynamics of point defect formation, clustering and pit initiation on the pyrite surface. Elettrochim Acta 127:416–425.  https://doi.org/10.1016/j.electacta.2014.02.048 CrossRefGoogle Scholar
  52. Holm NG, Anderson EM (1998) Hydrothermal systems. In: Brack A (ed) The molecular origins of life assembling pieces of the puzzle. Cambridge University press, pp 86–99Google Scholar
  53. Holm NG, Charlou J-L (2001) Initial indications of abiotic formation of hydrocarbons in the rainbow ultramafic hydrothermal system mid-Atlantic ridge. Earth Planet Sci Lett 191:1–8CrossRefGoogle Scholar
  54. Holm NG, Ertem G, Ferris JP (1993) The binding and reactions of nucleotides and polynucleotides on iron oxide hydroxide polymorphs. Orig Life Evol Biosph 23:195–215CrossRefPubMedGoogle Scholar
  55. Jelicka J, Edwards HGM, Villar SEJ (2006) Raman spectroscopic study of mellite- a naturally ocuuring aluminium benzenehexacarboxylate from lignite-claystone series of the tertiary age. Spectrochim Acta A Mol Biomol Spectrosc 65:229–234CrossRefGoogle Scholar
  56. Kawasumi S, Chiba H (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem Geol 451:1–188.  https://doi.org/10.1016/jchemgeo201701001 CrossRefGoogle Scholar
  57. Kelley DS (2015) Black smokers: incubators on the seafloor. https://www.researchgate.net/publication/268358305_Black_Smokers_Incubators_on_the_Seafloor (Access March, 2017)
  58. Konn C, Charlou JL, Donval JP, Holm NG, Dehairs F, Bouillon S (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from rainbow and lost City ultramafic hosted vents. Chem Geol 258:299–314CrossRefGoogle Scholar
  59. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654.  https://doi.org/10.1016/jtig200509006 CrossRefPubMedGoogle Scholar
  60. Kundell FA (2011) A suggested Pioneer organism for the Wächtershäuser. Orig life Evol Biosph 41:175–198.  https://doi.org/10.1007/s11084010-9217-y
  61. Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280.  https://doi.org/10.1002/bies200900131 CrossRefPubMedGoogle Scholar
  62. Lazar C, McCollom TM, Manning CE (2012) Abiogenic methanogenesis during experimental komatiite serpentinization: implications for the evolution of the early Precambrian atmosphere. Chem Geol 326:102–112CrossRefGoogle Scholar
  63. Lentini F, Carbone S (2014) Geologia della Sicilia con i contributi di Branca S (vulcanico) e Messina A (basamenti cristallini). ISPRA Mem Descrit C Geol It 95:7–414Google Scholar
  64. Li Y, Chen J, Chen Y, Zhao C, Zhang Y, Ke B (2018) Interactions of oxygen and water molecules with pyrite surface: a new insight. Langmuir 34(5):1941–1952.  https://doi.org/10.1021/acs.langmuir.7b04112 CrossRefPubMedGoogle Scholar
  65. Lindgren P, Parnell J, Holm NG, Broman C (2011) A Demonstration Of An Affinity Between Pyrite And Organic Matter. In: A Hydrothermal Setting. Geochem Trans, vol 12, pp 1–13.  https://doi.org/10.1186/1467-4866-12-3
  66. Liu T, Temprano I, Jenkins SJ, King DA, Driver SM (2012) Nitrogen adsorption and desorption at iron pyrite FeS2 {100} surfaces. Phys Chem Chem Phy 14:11491–11499CrossRefGoogle Scholar
  67. Loppnow GR, Shoute L, Schmidt KJ, Savage A, Hall RH, Bulmer JT (2004) UV Raman spectroscopy of hydrocarbons. Philos Trans Royal Soc A 362:2461–2476.  https://doi.org/10.1098/rsta20041449 CrossRefGoogle Scholar
  68. Manuella FC (2011) Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean plateau (southeastern Sicily Italy). Per Miner 80:247–266Google Scholar
  69. Manuella FC, Scribano V, Carbone S, Brancato A (2015) The Hyblean xenolith suite (Sicily): an unexpected legacy of the Ionian–Tethys realm. Int J Earth Sci 104:1317–1336CrossRefGoogle Scholar
  70. Manuella FC, Ottolini L, Carbone S, Scavo L (2016) Metasomatizing effects of ser- pentinization-related hydrothermal fluids in abyssal peridotites: new contributions from Hyblean peridotite xenoliths (southeastern Sicily). Lithos 264:405–421CrossRefGoogle Scholar
  71. Manuella FC, Della Ventura G, Galdenzi F, Carbone S (2018) Sr-rich aragonite veins in Hyblean serpentinized peridotite xenoliths (Sicily Italy): evidence for abyssal-type carbonate metasomatism. Lithos (accepted manuscript).  https://doi.org/10.1016/jlithos201812024
  72. Marques AFA, Barriga FJAS, SD DS (2007) Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: from serpentinization to the formation of cu–Zn–(co)-rich massive sulfides. Mar Geol 245:20–39CrossRefGoogle Scholar
  73. Martin W (2012) Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation. FEBS Lett 586:485–493CrossRefPubMedGoogle Scholar
  74. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes and from prokaryotes to nucleated cells. Philos Trans R Soc Lond Ser B Biol Sci 358(1429):59–85CrossRefGoogle Scholar
  75. Matrajt G, Borg J, Raynal PI, Djouadi Z, d’Hendecourt L, Flynn G, Deboffle D (2004) FTIR and Raman analyses of the Tagish Lake meteorite: relationship with the aliphatic hydrocarbons observed in the diffuse interstellar medium. Astron Astrophys 416:983–990.  https://doi.org/10.1051/0004-6361:20034526
  76. McCollom TM (2013) Laboratory simulations of abiotic hydrocarbon formation in Earth's deep subsurface. Rev Mineral Geochem 75:467–494CrossRefGoogle Scholar
  77. McCollom TM, Seewald JS (2007) Abiotic synthesis of organic compounds in deep-sea hydrothermal environments. Chem Rev 107:382–401CrossRefPubMedGoogle Scholar
  78. McCue AJ, Anderson JA (2014) Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catal Sci Technol 4:272–294.  https://doi.org/10.1039/c3cy00754e CrossRefGoogle Scholar
  79. Ménez B, Pisapia C, Andreani M, Jamme F, Vanbellingen QP, Brunelle A, Richard L, Dumas P, Réfrégiers M (2018) Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564:59–63.  https://doi.org/10.1038/s41586-018-0684-z
  80. Mével C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. C R Geosci 335:825–852.  https://doi.org/10.1016/jcrte200308006 CrossRefGoogle Scholar
  81. Michalkova A, Kholod Y, Kosenkov D, Gorb L, Leszczynski J (2011) Viability of pyrite pulled metabolism in the ‘iron-sulfur world’ theory: quantum chemical assessment. Geochim Cosmochim Acta 75:1933–1941CrossRefGoogle Scholar
  82. Murphy R, Strongin DR (2009) Surface reactivity of pyrite and related sulfides. Surf Sci Rep 64:1–45.  https://doi.org/10.1016/j.surfrep.2008.09.002 CrossRefGoogle Scholar
  83. Natland JH, Dick HJB (2001) Formation of the lower ocean crust and the crystallization of gabbroic cumulates at a very slowly spreading ridge. J Volcanol Geotherm Res 110:191–233CrossRefGoogle Scholar
  84. Nesbitt HW, Bancroft GM, Pratt AR, Scaini MJ (1998) Sulfur and iron surface states on fractured pyrite surfaces. Am Mineral 83:1067–1076CrossRefGoogle Scholar
  85. Palandri J, Reed M (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization rodingitization and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68:1115–1133CrossRefGoogle Scholar
  86. Philpott MR, Goliney IY, Lin TT (2004) Molecular dynamics simulation of water in a contact with an iron pyrite FeS2 surface. J Chem Phys 120:1943–1950CrossRefPubMedGoogle Scholar
  87. Pollet R, Boehme C, Marx D (2007) Ab initio simulations of desorption and reactivity of glycine at a water-pyrite interface at “iron sulfur world” prebiotic conditions. Orig Life Evol Biospheres 36:363–379.  https://doi.org/10.1007/s11084-006-9010-0
  88. Qian G, Brugger F, Skinner WM, Chen G, Pring A (2010) An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300 °C. Geochim Cosmochim Acta 74:5610–5630.  https://doi.org/10.1016/jgca201006035 CrossRefGoogle Scholar
  89. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond 362:2271–2288.  https://doi.org/10.1098/rsta20041454 CrossRefGoogle Scholar
  90. Rickard D (1997) Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulphide in aqueous solutions between 25°C and 125°C: the rate equation. Geochim Cosmochim Acta 61:115–134CrossRefGoogle Scholar
  91. Rimstidt JD, Vaughan DJ (2003) Pyrite Oxidation: A State-Of-The-Art Assessment of the reaction mechanism. Geochimic Cosmochim Acta 67:873–880CrossRefGoogle Scholar
  92. Rodrigues Coelho R, Hovell I, de Mello Monte MB, Middea A, Lopes de Souza A (2006) Characterisation of aliphatic chains in vacuum residues VRs of asphaltenes and resins using molecular modelling and FTIR techniques. Fuel Process Technol 87:325–333CrossRefGoogle Scholar
  93. Rona PA, Devey CW, Dyment J, Murton BJ (Eds) (2010) Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Am Geophys Union Washington DC.  https://doi.org/10.1029/2008GM000760
  94. Russel MJ, Hall AJ, Boyce AJ, Fallick AE (2005) On Hydrothermal Convection Systems and the Emergence of Life. Econ Geol 100:419–438. 0361–0128/01/3503/419–20 $600Google Scholar
  95. Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154:377–402CrossRefGoogle Scholar
  96. Schikorr G (1933) Über eisen(II)-hydroxid und ein ferromagnetisches eisen(III)-hydroxyd. Z Anorg Allg Chem 212:33–39CrossRefGoogle Scholar
  97. Schmidt G, Fueten F, Stesky R, Flahaut J, Hauber E (2018) Geology of Hebes Chasma Mars: 1 Structure Stratigraphy and Mineralogy of the Interior Layered Deposits. JGR Planets 123:2893–2919.  https://doi.org/10.1029/2018JE005658 CrossRefGoogle Scholar
  98. Schoonen MAA, Xu Y, Bebie J (1999) Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant. Orig Life Evol Biosph 29:5–32CrossRefPubMedGoogle Scholar
  99. Schulte MD, Rogers KL (2004) Thiols in hydrothermal solution: standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochim Cosmochim Acta 68:1087–1097CrossRefGoogle Scholar
  100. Scirè S, Ciliberto E, Crisafulli C, Scribano V, Bellatreccia F, Della Ventura G (2011) Asphaltene-bearing mantle xenoliths from Hyblean diatremes Sicily. Lithos 125:956–968.  https://doi.org/10.1016/jlithos201105011 CrossRefGoogle Scholar
  101. Scribano V, Ioppolo S (2006) Possibile produzione di idrocarburi abiogenici in seguito alla serpentinizzazione di rocce ultrafemiche/femiche nel basamento ibleo (Sicilia): evidenze dagli xenoliti. Atti 85° Congresso Soci It Min Petr (In Italian)Google Scholar
  102. Scribano V, Sapienza GT, Braga R, Morten L (2006a) Gabbroic xenoliths in tuff-breccia pipes from the Hyblean plateau: insights into the nature and composition of the lower crust underneath southeastern Sicily Italy. Mineral Petrol 86:63–88.  https://doi.org/10.1007/s00710-005-0092-6
  103. Scribano V, Ioppolo S, Censi P (2006b) Chlorite/smectite-alkali feld- spar metasomatic xenoliths from Hyblean Miocenic diatremes (Sicily Italy): evidence for early interaction between hydrothermal brines and ultramafic/mafic rocks at crustal levels. Ofioliti 31:161–171.  https://doi.org/10.4454/ofiolitiv31i2338 CrossRefGoogle Scholar
  104. Scribano V, Viccaro M, Cristofolini R, Ottolini L (2009) Metasomatic events recorded in ultramaficxenoliths from the Hyblean area (southeastern Sicily Italy). Mineral Petrol 95:232–250CrossRefGoogle Scholar
  105. Seyfried WE, Pester NJ, Ding K, Rough M (2011) Vent fluid chemistry of the rainbow hydrothermal system (36°N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim Cosmochimic Acta 75:1574–1593CrossRefGoogle Scholar
  106. Sforna MC, Brunelli D, Pisapia C, Pasini V, Malferrari D, Ménez B (2018) Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust Nat Com 9:5049  https://doi.org/10.1038/s41467-018-07385-6
  107. Sharma PK, Rao KH (2003) Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloids Surf B 29:21–38CrossRefGoogle Scholar
  108. Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser- induced thermal effects and oxidation. J Raman Spectrosc 34:845–852.  https://doi.org/10.1002/jrs1056 CrossRefGoogle Scholar
  109. Silantyev SA, Novoselov AA, Mironenkom MV (2011) Hydrothermal systems in peridotites at slow-spreading ridges modeling phase transformations and material balance: role of gabbroids. Petrology 19:227–248CrossRefGoogle Scholar
  110. Simakov S, Kouchi A, Mel’nik NN, Scribano V, Kimura Y, Hama T, Suzuki N, Saito H, Yoshizawa T (2015) Nanodiamond finding in the Hyblean shallow mantle xenoliths. Sci Rep 5.  https://doi.org/10.1038/srep10765
  111. Snow JE, Edmond HN (2007) Ultraslow-spreading ridges rapid paradigm changes. Oceanography 20:90–101CrossRefGoogle Scholar
  112. Stirling A, Bernasconi M, Parrinello M (2007) Defective pyrite (100) surface: an ab initio study. Physi Rev B 75:165406.  https://doi.org/10.1103/PhysRevB.75.165406
  113. Stirling A, Rozgonyi T, Matthias M, Bernasconi M (2015) Pyrite in contact with supercritical water: the desolation of steam. Phys Chem Chem Phys 17:1735–17379.  https://doi.org/10.1039/c5cp01146a CrossRefGoogle Scholar
  114. Suiting I, Schmincke H-U (2009) Internal vs external forcing in shallow marine diatreme formation: a case study from the Iblean Mountains (SE-Sicily Central Mediterranean). J Volcanol Geotherm Res 186:361–378CrossRefGoogle Scholar
  115. Suiting I, Schmincke HU (2010) Iblean diatremes 2: shallow marine vol- canism in the Central Mediterranean at the onset of the Messinian salinity crisis (Iblean Mountains SE-Sicily)-a multidisciplinary approach nt. J Earth Sci 99:1917–1940Google Scholar
  116. Suzuki T, Yano T, Hara M, Ebisuzaki T (2018) Cysteine and cystine adsorption on FeS2 (100). Surf Sci 674:6–12.  https://doi.org/10.1016/j.susc.2018.03.011 CrossRefGoogle Scholar
  117. Szatmari P (1989) Petroleum formation by Fischer–Tropsch synthesis in plate tectonics. AAPG Bull 73:989–998Google Scholar
  118. Taylor P, Rummery TE, Owen DG (1979) Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C. J Inorg Nucl Chem 41:1683–1687CrossRefGoogle Scholar
  119. Tessis AC, Penteado-Fava A, Pontes-Buarque M, Amorim HS, Bonapace JAP, Souza-Barros F, Vieyra A (1999) Pyrite suspended in artificial sea water catalyzes hydrolysis of adsorbed ATP: enhancing effect of acetate. Orig Life Evol Biosph 29:361–374CrossRefPubMedGoogle Scholar
  120. Vai GB (1994) Crustal evolution and basement elements in the Italian area: palaeogeography and characterization. B Geofis Teor Appl 36:141–144Google Scholar
  121. Vai GB (2003) Development of the palaeogeography of Pangaea from late carboniferous to early Permian. Palaeogeogr Palaeoclimatol Palaeoecol 196:125–155CrossRefGoogle Scholar
  122. Van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS: appendix; In: Sylvester PJ (ed) Laser Ablation –ICP-Mass Spectrometry in the Earth Sciences: Principles and Applications Mineralogical Association of Canada Short Course Series Ottawa Ontario Canada 29 pp 239–243Google Scholar
  123. Vogt H, Chattopadhyay T, Stolz HJ (1983) Complete first-order Raman spectra of the pyrite structure compounds FeS2 MnS2 and SiP2. J Phys Chem Solids 44:869–873CrossRefGoogle Scholar
  124. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Mol Biol Rev 52:452–484Google Scholar
  125. Wang Z, Xie X, Xiao S, Liu J (2010) Adsorption behavior of glucose on pyrite surface investigated by TG, FTIR and XRD analyses. Hydrometallurgy 102:87–90CrossRefGoogle Scholar
  126. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S. Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microb 1(9):16116.  https://doi.org/10.1038/NMICROBIOL2016116
  127. Weitz CM, Dobrea EN, Wray JJ (2014) Mixtures of clays and sulfates within deposits in western Melas. Chasma Mars Icarus 251:291–314.  https://doi.org/10.1016/jicarus201404009 CrossRefGoogle Scholar
  128. Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343CrossRefGoogle Scholar
  129. Xian H, Zhu J, Tan W, Tang H, Liu P, Zhu R, Liang X, Wei J, He H, Teng HH (2019) The mechanism of defect induced hydroxylation on pyrite surfaces and implications for hydroxyl radical generation in prebiotic chemistry. Geochim Cosmochim Acta 244:163–172CrossRefGoogle Scholar
  130. Zhang X, Borda MJ, Schoonen MAA, Strongin D (2003) Adsorption of phospholipids on pyrite and their effect on surface oxidation. Langmuir 19:8787–8792CrossRefGoogle Scholar
  131. Zhao C, Chen J, Long X, Guo J (2014) Study of H2O adsorption on sulfides surfaces and thermokinetic analysis. J Ind Eng Chem 20:605–609CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biological, Geological and Envirnonmental SciencesUniversity of CataniaCataniaItaly
  2. 2.LLC “ADAMANT” Skolkovo ParticipantSt.PetersburgRussian Federation
  3. 3.National Institute of Geophysics and Volcanology (INGV)PalermoItaly
  4. 4.Department of Chemical SciencesUniversity of CataniaCataniaItaly

Personalised recommendations