Advertisement

Origins of Life and Evolution of Biospheres

, Volume 49, Issue 3, pp 111–145 | Cite as

Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report

  • Carlos Mariscal
  • Ana Barahona
  • Nathanael Aubert-Kato
  • Arsev Umur Aydinoglu
  • Stuart Bartlett
  • María Luz Cárdenas
  • Kuhan Chandru
  • Carol Cleland
  • Benjamin T. Cocanougher
  • Nathaniel Comfort
  • Athel Cornish-Bowden
  • Terrence Deacon
  • Tom Froese
  • Donato Giovannelli
  • John Hernlund
  • Piet Hut
  • Jun Kimura
  • Marie-Christine Maurel
  • Nancy Merino
  • Alvaro Moreno
  • Mayuko Nakagawa
  • Juli Peretó
  • Nathaniel Virgo
  • Olaf Witkowski
  • H. James CleavesIIEmail author
History and Philosophy of Origin of Life Studies

Abstract

In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the “bottom up” approach) and (4) how to infer the nature of the last universal common ancestor (the “top down” approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a” circularity” approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.

Keywords

Theories of life LUCA Multidisciplinary science Prebiotic evolution Self-organization Artificial life Epistemology 

Notes

Acknowledgements

The authors wish to thank the Earth-Life Science Institute Origins Network (EON) at the Tokyo Institute of Technology for hosting the meeting History and Philosophy of Origins Research Workshop that took place on August 2016 in Tokyo, Japan, which this publication is based. This project/publication was supported by the ELSI Origins Network (EON), which is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. T.F.’s work on this article was supported by an ELSI Origins Network (EON) Long-Term Visitor Award and by an UNAM-DGAPA-PAPIIT project (IA104717).

References

  1. Adams A, Walker SI (2017) Real-world open-ended evolution: a league of legends adventure. International Journal of Design & Nature and Ecodynamics 12:458–469CrossRefGoogle Scholar
  2. Adams A, Zenil H, Davies PCW, Walker SI (2017) Formal definitions of unbounded evolution and innovation reveal universal mechanisms for open-ended evolution in dynamical systems. Sci Rep 7:997CrossRefPubMedPubMedCentralGoogle Scholar
  3. Altenberg L (1994) The evolution of evolvability in genetic programming. Advances in Genetic Programming 3:47–74Google Scholar
  4. Anders E, Hayatsu R, Studier MH (1973) Organic compounds in meteorites. Science 182:781–790CrossRefGoogle Scholar
  5. Andersen JL, Andersen T, Flamm C, Hanczyc MM, Merkle D, Stadler PF (2013a) Navigating the chemical space of HCN polymerization and hydrolysis: guiding graph grammars by mass spectrometry data. Entropy 15:4066–4083CrossRefGoogle Scholar
  6. Andersen JL, Flamm C, Merkle D, Stadler PF (2013b) Inferring chemical reaction patterns using rule composition in graph grammars. J Syst Chem 4:4CrossRefGoogle Scholar
  7. Andersen JL, Flamm C, Merkle D, Stadler PF (2014) Generic strategies for chemical space exploration. Int J Comput Biol Drug Design 7:225–258Google Scholar
  8. Ashby WR (1966) Design for a Brain: the origin of adaptive behaviour. Chapman and Hall, LondonGoogle Scholar
  9. Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158CrossRefPubMedPubMedCentralGoogle Scholar
  10. Aydinoglu AU, Taskin Z (2016) Origins of life research: a bibliometric approach. Orig. Life Evol. Biosph. 48:55–71.  https://doi.org/10.1007/s11084-017-9543-4
  11. Aydinoglu AU, Allard S, Mitchell C (2016) Measuring diversity in disciplinary collaboration in research teams: an ecological perspective. Research Evaluation 25:18–36.  https://doi.org/10.1093/reseval/rvv028 CrossRefGoogle Scholar
  12. Bada JL, Lazcano A (2003) Prebiotic soup - revisiting the Miller experiment. Science 300:745–746CrossRefGoogle Scholar
  13. Bahadur K (1966) Synthesis of Jeewanu: the protocell. Ram Narain Lal Beni Prasad. Uttar Pradesh, IndiaGoogle Scholar
  14. Bains W (2004) Many chemistries could be used to build living systems. Astrobiology 4:137–167CrossRefGoogle Scholar
  15. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett 59:381–384CrossRefGoogle Scholar
  16. Ball P (1999) The self-made tapestry: pattern formation in nature. Oxford University PressGoogle Scholar
  17. Banzhaf W, Yamamoto L (2015) Artificial chemistries. MIT Press, CambridgeCrossRefGoogle Scholar
  18. Barge LM, Cardoso SS, Cartwright JH, Cooper GJ, Cronin L, De Wit A, Doloboff IJ, Escribano B, Goldstein RE, Haudin F (2015) From chemical gardens to chemobrionics. Chem Rev 115:8652–8703CrossRefGoogle Scholar
  19. Baynes JW (2005) The Maillard reaction: chemistry at the interface of nutrition, aging, and disease. New York Academy of Sciences, New YorkGoogle Scholar
  20. Beatty J (1997) Why do biologists argue like they do? Philos Sci 64:S432–S443CrossRefGoogle Scholar
  21. Bedau MA, Packard NH (1991) Measurement of evolutionary activity, teleology, and life. In Artificial Life II. Santa Fe Institute Studies in the Sciences of Complexity,Vol. X, (Redwood City, CA: Addison-Wesley, 1992), pp. 431–461Google Scholar
  22. Bedau MA, McCaskill JS, Packard NH, Rasmussen S, Adami C, Green DG, Ray TS (2000) Open problems in artificial life. Artif Life 6:363–376CrossRefPubMedPubMedCentralGoogle Scholar
  23. Beer RD (2004) Autopoiesis and cognition in the game of life. Artif Life 10:309–326CrossRefPubMedPubMedCentralGoogle Scholar
  24. Benkö G, Flamm C, Stadler PF (2003a) Generic properties of chemical networks: artificial chemistry based on graph rewriting. In Advances in Artificial Life, ECAL, Dortmund, Germany:10–19Google Scholar
  25. Benkö G, Flamm C, Stadler PF (2003b) A graph-based toy model of chemistry. J Chem Inf Comput Sci 43(4):1085–1093CrossRefGoogle Scholar
  26. Benkö G, Flamm C, Stadler P (2004) Multi-phase artificial chemistry. The logic of artificial life: abstracting and synthesizing the principles of living systems, 1, 10–20Google Scholar
  27. Benkö G, Flamm C, Stadler P (2005) Explicit collision simulation of chemical reactions in a graph based artificial chemistry. Advances in Artificial Life:725–733Google Scholar
  28. Benner SA, Kim H-J, Carrigan MA (2012) Asphalt, water, and the prebiotic synthesis of ribose, Ribonucleosides, and RNA. Acc Chem Res 45:2025–2034CrossRefGoogle Scholar
  29. Benner SA, Bains W, Seager S (2013) Models and standards of proof in crossdisciplinary science: the case of arsenic DNA. Astrobiology 13:510–513CrossRefGoogle Scholar
  30. Bich L, Green S (2017) Is defining life pointless? Operational definitions at the frontiers of biology. Synthese:1–28Google Scholar
  31. Boltzmann, L. (1886/1974). The second law of thermodynamics. In Theoretical Physics and Philosophical Problems. Edited by McGuinness, B. F. (ed. Springer), p. 24Google Scholar
  32. Booker LB, Goldberg DE, Holland JH (1989) Classifier systems and genetic algorithms. Artif Intell 40:235–282CrossRefGoogle Scholar
  33. Boutlerow A (1861) Formation synthétique d’une substance sucrée. C R Acad Sci 53:145–147Google Scholar
  34. Bowler PJ (1989) Evolution: the history of an idea. University of California Press, BerkeleyGoogle Scholar
  35. Bowler PJ (1992) The eclipse of Darwinism: anti-Darwinian evolution theories in the decades around 1900. Johns Hopkins University Press, BaltimoreGoogle Scholar
  36. Bowler PJ (2013) Darwin deleted: imagining a world without Darwin. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  37. Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 1(21):22–26CrossRefGoogle Scholar
  38. Bunge M (2003) Emergence and convergence: qualitative novelty and the unity of knowledge. University of Toronto Press, TorontoGoogle Scholar
  39. Cafferty BJ, Hud NV (2015) Was a pyrimidine-pyrimidine base pair the ancestor of Watson-Crick base pairs? Insights from a systematic approach to the origin of RNA. Isr J Chem 55:891–905Google Scholar
  40. Cairns-Smith AG (1971) The life puzzle: on crystals and organisms and on the possibility of a crystal as an ancestor. University of Toronto PressGoogle Scholar
  41. Campaigne E (1955) Wohler and the overthrow of vitalism. J Chem Educ 32:403CrossRefGoogle Scholar
  42. Campos LA (2015) Radium and the secret of life. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  43. Canguilhem G (1966) Le concept et la vie. Revue philosophique de Louvain 64:193–223CrossRefGoogle Scholar
  44. Caporael LR, Griesemer JR, Wimsatt WC (eds) (2013) Developing scaffolds in evolution, culture, and cognition. (Vienna series in theoretical biology). MIT Press, CambridgeGoogle Scholar
  45. Cárdenas ML, Benomar S, Cornish-Bowden A (2018) Rosennean complexity and its relevance to ecology. Ecol Complex 35:13–24CrossRefGoogle Scholar
  46. Cech TR (1993) The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135:33–36CrossRefGoogle Scholar
  47. Chamberlin T, Chamberlin R (1908) Early terrestrial conditions that may have favored organic synthesis. Science 28:897–911CrossRefGoogle Scholar
  48. Chandru K, Gilbert A, Butch C, Aono M, Cleaves HJ II (2016) The abiotic chemistry of thiolated acetate derivatives and the origin of life. Sci Rep 6:29883Google Scholar
  49. Chandru K, Guttenberg N, Giri C, Hongo Y, Butch C, Mamajanov I, Cleaves HJ (2018) Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Comm Chem 1(1):30Google Scholar
  50. Chargaff E, Lipshitz R, Green C (1952) Composition of the desoxypentose nucleic acids of four genera of sea-urchin. J Biol Chem 195:155–160PubMedGoogle Scholar
  51. Cleaves HJ (2012) Prebiotic chemistry: what we know, what we don't. Evol Edu Outreach 5:342–360Google Scholar
  52. Cleaves HJ, Lazcano A, Mateos IL, Negrín-Mendoza A, Peretó J, Silva E (2014) Herrera's 'Plasmogenia' and other collected works: early writings on the experimental study of the origin of life. Springer, New YorkGoogle Scholar
  53. Cleaves HJ, Meringer M, Goodwin J (2015) 227 views of RNA: is RNA unique in its chemical isomer space? Astrobiology 15:538–558CrossRefPubMedPubMedCentralGoogle Scholar
  54. Cleland CE (2013) Conceptual challenges for contemporary theories of the origin of fife. Curr Org Chem 17:1704–1709CrossRefGoogle Scholar
  55. Cleland CE (2020) The quest for a universal theory of life. Searching for life as we Don’t know it. Cambridge University PressGoogle Scholar
  56. Cleland CE, Chyba CF (2007) Planets and life: the emerging science of astrobiology. Cambridge University Press, CambridgeGoogle Scholar
  57. Cleland CE, Copley SD (2005) The possibility of alternative microbial life on earth. Int J Astrobiol 4:165–173CrossRefGoogle Scholar
  58. Corliss J, Baross J, Hoffman S (1981) A hypothesis concerning the relationship between submarine hot springs and the origin of life on earth. Oceanol Acta 4:59–69Google Scholar
  59. Cornish-Bowden A (2015) Tibor Gánti and Robert Rosen: contrasting approaches to the same problem. J Theor Biol 381:6–10CrossRefGoogle Scholar
  60. Cornish-Bowden A, Cárdenas ML (2007) Organizational invariance in (M,R) systems. Chem Biodivers 4:2396–2406CrossRefGoogle Scholar
  61. Cornish-Bowden A, Cárdenas ML (2008) Self-organization at the origin of life. J Theor Biol 252:379–387CrossRefGoogle Scholar
  62. Cornish-Bowden A, Cárdenas ML (2017) Life before LUCA. J Theor Biol 434:68–73CrossRefGoogle Scholar
  63. Cornish-Bowden A, Cárdenas ML, Letelier JC, Soto-Andrade J (2007) Beyond reductionism: metabolic circularity as a guiding vision for a real biology of systems. Proteomics 7:839–845CrossRefGoogle Scholar
  64. Cronin L, Krasnogor N, Davis BG, Alexander C, Robertson N, Steinke JH, Siepmann P (2006) The imitation game—a computational chemical approach to recognizing life. Nat Biotechnol 24:1203–1206CrossRefGoogle Scholar
  65. Damer B, Deamer D (2015) Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life 5:872–887CrossRefPubMedPubMedCentralGoogle Scholar
  66. Davies PC, Lineweaver CH (2005) Finding a second sample of life on earth. Astrobiology 5:154–163CrossRefGoogle Scholar
  67. Dawkins R (1982) Universal Darwinism. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, UK, pp 403–425Google Scholar
  68. Dawkins R (1989) In: Langton CG (ed) Artificial life: the proceedings of an interdisciplinary workshop on the synthesis and simulation of living systems, vol 6. Addison–Wesley, Reading, pp 201–220Google Scholar
  69. De Duve C (1991) Blueprint for a cell: the nature and origin of life. North PattersonGoogle Scholar
  70. De la Escosura A, Briones C, Ruiz-Mirazo K (2015) The systems perspective at the crossroads between chemistry and biology. J Theor Biol 381:11–22CrossRefGoogle Scholar
  71. Deacon TW (2011) Incomplete nature: how mind emerged from matter. W. W. Norton, New YorkGoogle Scholar
  72. Deacon T (2015) Steps to a science of biosemiotics. Green Letts 19:293–311Google Scholar
  73. Deacon, T., Srivastava, A. & Bacigalupi, J. (2014). The transition from constraint to regulation at the origin of life. Frontiers in Bioscience 19, 945–957Google Scholar
  74. Decker P, Schweer H, Pohlmann R (1982) Bioids: X. identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mass spectrometry of n-butoxime trifluoroacetates on OV-225. J Chromatogr A 244:281–291CrossRefGoogle Scholar
  75. Deichmann U (2009a) Chemistry and the engineering of life around 1900: research and reflections by Jacques Loeb. Biol Theory 4:323–332CrossRefGoogle Scholar
  76. Deichmann U (2009b) Molecular versus “colloidal”: controversies in biology and biochemistry, 1900-1940. Bull Hist Chem 32:105–118Google Scholar
  77. Deichmann U (2012) Crystals, colloids, or molecules?: early controversies about the origin of life and synthetic life. Perspect Biol Med 55:521–542CrossRefGoogle Scholar
  78. Descartes R (1664/2010) Treatise on Man. In: The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science. Edited by M. A. Bedau & C.E. Cleland. New York, N.Y.: Cambridge University Press, p. 15–20. 9–14. (Original translation published in 1985 by J. Cottingham, R. Stoothoff, and D. Murdoch, Cambridge University Press. Original work published in 1664)Google Scholar
  79. Di Paolo EA (2005) Autopoiesis, adaptivity, teleology, agency. Phenomenol Cogn Sci 4(4):429–452CrossRefGoogle Scholar
  80. Di Paolo EA (2009) Extended life. Topoi 28:9–21CrossRefGoogle Scholar
  81. Di Paolo, E A., Noble, J. & Bullock, S. (2000). Simulation models as opaque thought experiments. In Proceedings of artificial life VII: the seventh international conference on the simulation and synthesis of living systems. (ed. MIT press). pp. 497–506. MIT, Cambridge, MassGoogle Scholar
  82. Dick SJ, Strick JE (2005) The living universe: NASA and the development of astrobiology. Rutgers University Press, New JerseyGoogle Scholar
  83. Diéguez A (2013) Life as a homeostatic property cluster. Biol Theory 7(2):180–186 10/gd6gnsCrossRefGoogle Scholar
  84. Dittrich P, Di Fenizio PS (2007) Chemical organisation theory. Bull Math Biol 69(4):1199–1231CrossRefGoogle Scholar
  85. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annual Reviews in Microbiology 51:151–178CrossRefGoogle Scholar
  86. Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortín J, VandePol S (1985) The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance—a review. Gene 40:1–8CrossRefGoogle Scholar
  87. Douglas H (2016) Values in Science. In: Oxford handbook of philosophy of science. Oxford University Press, pp 609–630Google Scholar
  88. Dray W (1957) Laws and Explanation in history. Oxford University Press, Oxford, UKGoogle Scholar
  89. Dworkin JP, Lazcano A, Miller SL (2003) The roads to and from the RNA world. J Theor Biol 222:127–134CrossRefGoogle Scholar
  90. Dyson F (1999) Origins of life. Cambridge Cambridge University PressGoogle Scholar
  91. Eakin RE (1963) An approach to the evolution of metabolism. Proc Natl Acad Sci U S A 49:360–366CrossRefPubMedPubMedCentralGoogle Scholar
  92. Egbert MD, Barandiaran X, Di Paolo EA (2012) Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis. Artif Life 18:1–25CrossRefGoogle Scholar
  93. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523CrossRefGoogle Scholar
  94. Eigen M (1993) Viral quasispecies. Sci Am 269(1):42–49CrossRefGoogle Scholar
  95. Eigen M, Schuster P (1978) The hypercycle. Naturwissenschaften 65:7–41CrossRefGoogle Scholar
  96. Eigen M, Schuster P (1979) The Hypercycle. A principle of natural self- organization. Springer-Verlag, BerlinGoogle Scholar
  97. Eisenberg L, Pellmar TC (2000) Bridging disciplines in the brain, behavioral, and clinical sciences. National Academies Press, Washington D.CGoogle Scholar
  98. Eschenmoser A (2007) On a hypothetical generational relationship between HCN and constituents of the reductive citric acid cycle. Chem Biodivers 4:554–573CrossRefGoogle Scholar
  99. Eschenmoser A, Kisakürek MV (1996) Chemistry and the origin of life. Helvetica Chimica Acta 79:124CrossRefGoogle Scholar
  100. Farley J (1977) The spontaneous generation controversy from Descartes to Oparin. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  101. Farley J, Geison GL (1974) Science, politics and spontaneous generation in nineteenth century France: the Pasteur-Pouchet debate. Bull Hist Med 48(2):161–198PubMedGoogle Scholar
  102. Feinberg G, Shapiro R (1980) Life beyond earth: the intelligent Earthling’s guide to life in the universe. W. Morrow Quill Paperbacks, New YorkGoogle Scholar
  103. Ferreira Ruiz MJF, Umerez J (2018) Dealing with the changeable and blurry edges of living things: a modified version of property-cluster kinds. Eur J Philos Sci 8(3):493–518CrossRefGoogle Scholar
  104. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311CrossRefPubMedPubMedCentralGoogle Scholar
  105. Fontana W, Buss LW (1994) What would be conserved if "the tape were played twice?". Proc Natl Acad Sci 91:757–761CrossRefPubMedPubMedCentralGoogle Scholar
  106. Fox R (1967) Kinship and marriage: an anthropological perspective. Cambridge University Press, CambridgeGoogle Scholar
  107. Friston K (2013) Life as we know it. J R Soc Interface 10:20130475CrossRefPubMedPubMedCentralGoogle Scholar
  108. Froese T, Stewart J (2010) Life after Ashby: ultrastability and the autopoietic foundations of biological individuality. Cybernetics & Human Knowing 17:83–106Google Scholar
  109. Froese T, Ikegami T, Virgo N (2012) The behavior-based hypercycle: from parasitic reaction to symbiotic behavior. In C. Adami, D. M. Bryson, C. Ofria, & R. T. Pennock. In: Artificial life 13: proceedings of the thirteenth international conference on the simulation and synthesis of living systems. The MIT Press, Cambridge, pp 457–464CrossRefGoogle Scholar
  110. Froese T, Virgo N, Ikegami T (2014) Motility at the origin of life: its characterization and a model. Artif Life 20:55–76CrossRefGoogle Scholar
  111. Fry I (1995) Are the different hypotheses on the emergence of life as different as they seem? Biol Philos 10:389–417CrossRefGoogle Scholar
  112. Fry I (2000) Emergence of life on Earth: a historical and scientific overview. Rutgers University Press, New JerseyGoogle Scholar
  113. Fry I (2006) The origins of research into the origins of life. Endeavour 30:24–28CrossRefGoogle Scholar
  114. Gánti T (2000) Levels of life and death. In (2003): The Principles of Life. Oxford University Press, Oxford, pp 1–10Google Scholar
  115. Gánti T (2003) The Principles of Life. Oxford University Press. In: Oxford and New YorkGoogle Scholar
  116. Garrison WM, Morrison D, Hamilton J, Benson A, Calvin M (1951) Reduction of carbon dioxide in aqueous solutions by ionizing radiation. Science 114:416–418CrossRefGoogle Scholar
  117. Gilbert W (1986) Origin of life: the RNA world. Nature 319:6055CrossRefGoogle Scholar
  118. Giovannelli D, Sievert SM, Hügler M, Markert S, Becher D, Schweder T, Vetriani C (2017) Insight into the evolution of microbial metabolism from the deepbranching bacterium, Thermovibrio ammonificans. eLife 6:e18990CrossRefPubMedPubMedCentralGoogle Scholar
  119. Gleiser M, Nelson B, Walker SI (2012) Chiral polymerization in open systems from chiral-selective reaction rates. Orig Life Evol Biosph 42:333–346CrossRefGoogle Scholar
  120. Gogarten-Boekels M, Hilario E, Gogarten JP (1995) The effects of heavy meteorite bombardment on the early evolution—the emergence of the three domains of life. Orig Life Evol Biosph 25:251–264CrossRefGoogle Scholar
  121. Goldbeter A (2017) Dissipative structures and biological rhythms. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:104612Google Scholar
  122. Goldenfeld N, Woese C (2007) Biology's next revolution. Nature 445:369–369CrossRefGoogle Scholar
  123. Griesemer J (2008) Origins of life studies. The Oxford Handbook for Philosophy of Biology. (ed. Oxford University Press), 263-299. Oxford University, New YorkCrossRefGoogle Scholar
  124. Guttenberg N, Virgo N, Chandru K, Scharf C, Mamajanov I (2017) Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos Trans R Soc A Math Phys Eng Sci 375(2109):20160347CrossRefGoogle Scholar
  125. Haldane JBS (1929) The origin of life. The Rationalist Annual 148:3–10 Google Scholar
  126. Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370CrossRefGoogle Scholar
  127. Henderson LJ (1913) The fitness of the environment. Macmillan, BasingstokeGoogle Scholar
  128. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56CrossRefPubMedPubMedCentralGoogle Scholar
  129. Hilton ML, Cooke NJ (2015) Enhancing the effectiveness of team science. National Academies Press, Washington D.CGoogle Scholar
  130. Holland JJD, De La Torre JC, Steinhauer DA (1992) RNA virus populations as quasispecies. In: Genetic diversity of RNA viruses. Springer, Berlin Heidelberg, pp 1–20CrossRefGoogle Scholar
  131. Holmes FL (2004) Investigative pathways: patterns and stages in the careers of experimental scientists. Yale University Press, New HavenGoogle Scholar
  132. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048.  https://doi.org/10.1038/nmicrobiol.2016.48 CrossRefPubMedGoogle Scholar
  133. Ilardo M, Meringer M, Freeland S, Rasulev B, Cleaves HJ (2015) Extraordinarily adaptive properties of the genetically encoded amino acids. Sci Rep 5:9414Google Scholar
  134. Jabr F (2013) Why life does not really exist. Scientific American https://blogs.scientificamerican.com/brainwaves/why-life-does-not-really-exist/, Accessed: May 29, 2014
  135. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc. Natl. Acad. Sci. U. S. A. 84:4398–4402CrossRefPubMedPubMedCentralGoogle Scholar
  136. Joyce GF, Deamer DW, Fleischaker G (1994) Origins of life: the central concepts. Jones and Bartlett, BostonGoogle Scholar
  137. Judson HF (1979) The eighth day of creation: makers of the revolution in biology. Simon and Schuster, New York, New YorkGoogle Scholar
  138. Kampitz G, Fox SW (1969) The condensation of the adenylates of the amino acids common to protein. Proc Natl Acad Sci U S A 62:399–406CrossRefGoogle Scholar
  139. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New YorkGoogle Scholar
  140. Kauffman SA (2000) Investigations. Oxford University Press, New YorkGoogle Scholar
  141. Kauffman SA (2004) Autonomous agents. In Science and ultimate reality: Quantum theory, cosmology and complexity. (ed. Cambridge University Press), pp. 654–666. Templeton Foundation, Philadelphia and LondonGoogle Scholar
  142. Kauffman SA, Clayton P (2009) On emergence, agency, and organization. Biol Philos 21:501–521CrossRefGoogle Scholar
  143. Keller EF (2009) Making sense of life: explaining biological development with models, metaphors, and machines. Harvard University Press, CambridgeCrossRefGoogle Scholar
  144. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  145. King GAM (1980) Evolution of the coenzymes. Biosystems 13:23–45CrossRefGoogle Scholar
  146. King GAM (1982) Recycling, reproduction, and life’s origins. BioSystems 15:89–97CrossRefGoogle Scholar
  147. Koonin EV (2016) Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000 Research 5:F1000 Faculty Rev-1805Google Scholar
  148. Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense Systems in Archaea and Bacteria. Annu Rev Microbiol 71:233–261CrossRefPubMedPubMedCentralGoogle Scholar
  149. Korzeniewski B (2001) Cybernetic formulation of the definition of life. J Theor Biol 209:275–286CrossRefGoogle Scholar
  150. Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, ChicagoGoogle Scholar
  151. Lancet D, Zidovetzki R, Markovitch O (2018) Systems protobiology: origin of life in lipid catalytic networks. J R Soc Interface 15(144):20180159CrossRefPubMedPubMedCentralGoogle Scholar
  152. Langton CG (1984) Self-reproduction in cellular automata. Physica D Nonlinear Phenom 10(1–2):135–144Google Scholar
  153. Langton, C (1998) A new definition of artificial life. http://www.chairetmetal.com/cm03/intro.htm Google Scholar
  154. Latour B (1987) Science in action. Harvard University Press, CambridgeGoogle Scholar
  155. Lauring AS, Andino R (2010) Quasispecies theory and the behavior of RNA viruses. PLoS Pathog 6:e1001005CrossRefPubMedPubMedCentralGoogle Scholar
  156. Lazcano A (2010) Historical development of origins research. Cold Spring Harb. Perspect. Biol 2:a002089CrossRefPubMedPubMedCentralGoogle Scholar
  157. Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85:793–798CrossRefGoogle Scholar
  158. Letelier J-C, Marín G, Mpodozis J (2003) Autopoietic and (M,R) systems. J Theor Biol 222:261–272CrossRefGoogle Scholar
  159. Letelier J-C, Cárdenas ML, Cornish-Bowden A (2011) From L'Homme machine to metabolic closure: steps towards understanding life. J Theor Biol 286:100–113CrossRefGoogle Scholar
  160. Lewontin R (1970) The Units of selection. Annu. Rev. Ecol. Syst 1:1–18CrossRefGoogle Scholar
  161. Löb W (1913) Über das Verhalten des Formamids unter der Wirkung der stillen Entlandung. Ein Beitrag zur Frage der Stickstoff-Assimilation. Berichte der deutschen chemischen Gesellschaft 46:684–697CrossRefGoogle Scholar
  162. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci 113:5970–5975CrossRefPubMedPubMedCentralGoogle Scholar
  163. Lovejoy AO (1936) The great chain of being: A study of the history of an idea. Harvard University Press, Cambridge MassGoogle Scholar
  164. Luisi PL (2006) The Emergence of Life: From Chemical Origins to Synthetic Biology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  165. Machery E (2012) Why I stopped worrying about the definition of life... And why you should as well. Synthese 185:145–164CrossRefGoogle Scholar
  166. Malaterre C (2015) Chemical evolution and life. BIO Web of Conferences 4:00002CrossRefGoogle Scholar
  167. Mariscal C, Doolittle WF (2018) Life and life only: a radical alternative to life Definitionism. SyntheseGoogle Scholar
  168. Martin WF, Weiss MC, Neukirchen S, Nelson-Sathi S, Sousa FL (2016) Physiology, phylogeny, and LUCA. Microb Cell 3:582–587CrossRefPubMedPubMedCentralGoogle Scholar
  169. Maruyama S, Ikoma M, Genda H, Hirose K, Yokoyama T, Santosh M (2013) The naked planet earth: Most essential pre-requisite for the origin and evolution of life. Geosci Front 4:141–165CrossRefGoogle Scholar
  170. Maturana, H. (1970). Biology of cognition Report 9 Biological Computing Laboratory. University of Illinois, Urbana-ChampaignGoogle Scholar
  171. Maturana HR, Varela FJ (1980) Autopoiesis and cognition: the realisation of the living. D. Reidel Pub. Co, LondonCrossRefGoogle Scholar
  172. Maturana HR, Varela FJ (1992) The tree of knowledge: the biological roots of human understanding. Shambhala, BostonGoogle Scholar
  173. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  174. McKie D (1944) Wöhler‘s “synthetic” urea and the rejection of vitalism: a chemical legend. Nature 153:608–610CrossRefGoogle Scholar
  175. McMenamin MAS, Margulis L, Vernadsky VI, Ceruti M, Golubic R, Guerrero R, Ikeda N, Ikesawa N, Krumbein WE, Lapo A, Lazcano A, Suzuki D, Tickell C, Walter M, Westbroek P (1998) The biosphere. Springer, New YorkGoogle Scholar
  176. McMullin B (2004) Thirty years of computational autopoiesis: a review. ArtifLife 10:277–295Google Scholar
  177. Meléndez-Hevia E, Montero-Gómez N, Montero F (2008) From prebiotic chemistry to cellular metabolism — the chemical evolution of metabolism before Darwinian natural selection. J Theor Biol 252:505–519CrossRefGoogle Scholar
  178. Meringer M, Cleaves HJ, Freeland SJ (2013) Beyond terrestrial biology: charting the chemical universe of α-amino acid structures. J Chem Inf Model 53:2851–2862CrossRefGoogle Scholar
  179. Mesler B, Cleaves HJ (2015) A brief history of creation: science and the search for the origin of life. W. W. Norton Incorporated, New YorkGoogle Scholar
  180. Miescher JF (1871) Ueber die chemische. Zusammensetzung der Eiterzellen Medisch-chemische Untersuchungen 4:441–460Google Scholar
  181. Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529CrossRefGoogle Scholar
  182. Mitchell P (1961) Coupling of phosphorylation to Electron and hydrogen transfer by a Chemi-osmotic type of mechanism. Nature 191:144–148CrossRefGoogle Scholar
  183. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9:e1001127CrossRefPubMedPubMedCentralGoogle Scholar
  184. Morange M (2009) Life explained. Yale University Press, ConnecticutGoogle Scholar
  185. Morange M (2013) Histoire de la biologie moléculaire. La Découverte, ParisGoogle Scholar
  186. Morange M (2016) Une histoire de la biologie (inédit). Points, ParisGoogle Scholar
  187. Moreno A (2016) Some conceptual issues in the transition from chemistry to biology. Hist Philos Life Sci 38:1–16CrossRefGoogle Scholar
  188. Moreno A, Mossio M (2015) Introduction. Biological autonomy. A philosophical and theoretical enquiry. Springer, NetherlandsGoogle Scholar
  189. Moreno A, Ruiz-Mirazo K (2009) The problem of the emergence of functional diversity in prebiotic evolution. Biol. Philos 24:585–605CrossRefGoogle Scholar
  190. Morowitz HJ (1968) Energy flow in biology: biological organization as a problem in thermal physics, 2nd edn. Academic Press, New York and LondonGoogle Scholar
  191. Morowitz HJ (1991) The Thermodynamics of Pizza. Rutgers University Press, BrownstownGoogle Scholar
  192. Muchowska KB, Varma SJ, Chevallot-Beroux E, Lethuillier-Karl L, Li G, Moran J (2017) Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1:1716–1721CrossRefPubMedPubMedCentralGoogle Scholar
  193. National Academy of Sciences, National Academy of Engineering, and Institute of Medicine (2005) Facilitating Interdisciplinary Research. Washington, DC: The National Academies Press.  https://doi.org/10.17226/11153
  194. Nee S, Maynard Smith J (1990) The evolutionary biology of molecular parasites. Parasitology 100:S5–S18CrossRefGoogle Scholar
  195. Nelson KE, Robertson PM, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig. Life Evol. Biosph. 31:221–229CrossRefGoogle Scholar
  196. Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems. Wiley, New YorkGoogle Scholar
  197. Nilsson M, Snoad N (2000) Error thresholds for quasispecies on dynamic fitness landscapes. Phys Rev Lett 84:191–194CrossRefGoogle Scholar
  198. Nitschke JR (2009) Systems chemistry: molecular networks come of age. Nature 462:736–738CrossRefGoogle Scholar
  199. Nowak M, Schuster P (1989) Error thresholds of replication in finite populations mutation frequencies and the onset of Muller's ratchet. J Theor Biol 137:375–395CrossRefGoogle Scholar
  200. O'Malley M (2014) Philosophy of microbiology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  201. Oparin AI (1924) The origin of life. Izd. Moskovshii Rabochil, MoscowGoogle Scholar
  202. Orgel LE (1998a) The origin of life - a review of facts and speculations. Trends Biochem Sci 23:491–495CrossRefPubMedPubMedCentralGoogle Scholar
  203. Orgel LE (1998b) The origin of life - how long did it take? Orig Life Evol Biosph 28:91–96CrossRefPubMedPubMedCentralGoogle Scholar
  204. Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic earth. PLoS Biol 6:e18CrossRefPubMedPubMedCentralGoogle Scholar
  205. Pearson JE (1993) Complex patterns in a simple system. Science 261(5118):189–192CrossRefGoogle Scholar
  206. Peretó J (2016) Erasing Borders: a brief Chronicle of Early Synthetic Biology. J Mol Evol 83:176–183CrossRefGoogle Scholar
  207. Peretó J, Bada JL, Lazcano A (2009) Charles Darwin and the origin of life. Orig. Life Evol. Biosph 39:395–406CrossRefPubMedPubMedCentralGoogle Scholar
  208. Piedrafita G, Montero F, Morán F, Cárdenas ML, Cornish-Bowden A (2010) A simple self-maintaining metabolic system: robustness, autocatalysis, bistability. PLoS Comput Biol 6:e1000872CrossRefPubMedPubMedCentralGoogle Scholar
  209. Porter AL, Cohen AS, Roessner JD, Perreault M (2007) Measuring researcher interdisciplinarity. Scientometrics 72:117–147CrossRefGoogle Scholar
  210. Powell R, Mariscal C (2015) Convergent evolution as natural experiment: the tape of life reconsidered. Interface focus 5:1–13CrossRefGoogle Scholar
  211. Prigogine I (1969) Structure, dissipation and life. Theoretical physics and biology, 23–52Google Scholar
  212. Pross A (2012) What is life? How chemistry becomes biology. Oxford University Press, OxfordGoogle Scholar
  213. Rasmussen S (2009) Protocells: bridging nonliving and living matter. MIT Press, CambridgeGoogle Scholar
  214. Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (2008) Protocells: bridging nonliving and living matter. MIT Press, CambridgeCrossRefGoogle Scholar
  215. Remak R (1852) Über extracellulare Entstehung thierischer Zellen und über Vermehrung derselben durch Theilung. Arch Anat Physiol wiss Med 19:47–57Google Scholar
  216. Rosen R (1991) Life itself. Columbia University Press, New YorkGoogle Scholar
  217. Ruiz-Mirazo K, Peretó J, Moreno A (2004) A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph 34:323–346CrossRefGoogle Scholar
  218. Ruiz-Mirazo K, Umerez J, Moreno A (2008) Enabling conditions for ‘open-ended evolution. Biol. Philos 23:67–85CrossRefGoogle Scholar
  219. Ruiz-Mirazo K, Briones C, de la Escosura A (2014) Prebiotic systems chemistry: new perspectives for the origins of life. Chem Rev 114:285–366CrossRefGoogle Scholar
  220. Russell MJ, Hall AJ, Boyce AJ, Fallick AE (2005) 100th anniversary special paper: on hydrothermal convection systems and the emergence of life. Econ Geol 100:419–438Google Scholar
  221. Scharf C, Virgo N, Cleaves HJ, Aono M, Aubert-Kato N, Aydinoglu A, Barahona A, Barge LM, Benner SA, Biehl M, Brasser R, Butch CJ, Chandru K, Cronin L, Sebastian D, Jakob F, Hernlund J, Hut P, Ikegami T, Jun K, Kobayashi K, Mariscal C, McGlynn S, Menard B, Packard N, Pascal R, Pereto J, Rajamani S, Sinapayen L, Smith E, Switzer C, Takai K, Tian F, Ueno Y, Voytek M, Witkowski O, Hikaru Y (2015) A strategy for origins of life research. Astrobiology 15:1031–1042CrossRefPubMedPubMedCentralGoogle Scholar
  222. Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci 107:2763–2768CrossRefGoogle Scholar
  223. Schrödinger E (1944) What is life? In: The physical aspect of the living cell. The University Press, CambridgeGoogle Scholar
  224. Schulze-Makuch D, Irwin LN (2006) The prospect of alien life in exotic forms on other worlds. Naturwissenschaften 93:155–172CrossRefGoogle Scholar
  225. Schuster P (2000) Taming combinatorial explosion. Proc Natl Acad Sci 97:7678–7680CrossRefPubMedPubMedCentralGoogle Scholar
  226. Schwartz AW (2007) Intractable mixtures and the origin of life. Chem Biodivers 4:656–664CrossRefGoogle Scholar
  227. Segrè D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci 97:4112–4117CrossRefGoogle Scholar
  228. Shapiro R (2006) Small molecule interactions were central to the origin of life. Q Rev Biol 81:105–125CrossRefGoogle Scholar
  229. Silverman, E. & Bullock, S. (2004). Empiricism in artificial life. In Proceedings of the ninth international conference on artificial life. (ed. MIT Press), pp. 534–539. MIT Cambridge, MassGoogle Scholar
  230. Sims K (1994) Evolving 3D morphology and behavior by competition. Artif life 1:353–372CrossRefGoogle Scholar
  231. Smith KC (2018) Life as adaptive capacity: bringing new life to an old debate. Biol Theory:1–17Google Scholar
  232. Smith E, Morowitz HJ (2016) The origin and nature of life on earth: the emergence of the fourth geosphere. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  233. Spiegelman S, Haruna I, Holland IB, Beaudreau G, Mills D (1965) The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A 54(3):919–927CrossRefPubMedPubMedCentralGoogle Scholar
  234. Stokols, D., Fuqua, J., Gress, J., Harvey, R., Phillips, K., Baezconde-Garbanati,L., Unger, J., Palmer, P., Clark, M. A. & Colby, S. M. (2003). Evaluating transdisciplinary science. Nicotine Tob Res 5, S21-S39Google Scholar
  235. Stott R (2013) Darwin's Ghosts: In Search of the First Evolutionists, Bloomsbury, London. Strick, J. E. (2009). Sparks of life: Darwinism and the Victorian debates over spontaneous generation, Harvard University Press, Cambridge Mass. and LondonGoogle Scholar
  236. Strick JE (2009) Sparks of life: Darwinism and the Victorian debates over spontaneous generation. Harvard University Press.Google Scholar
  237. Szathmáry E (2013) On the propagation of a conceptual error concerning hypercycles and cooperation. J Syst Chem 4:1–4CrossRefGoogle Scholar
  238. Szostak JW (2012) Attempts to define life do not help to understand the origin of life. J Biomol Struct Dyn 29:599–600CrossRefPubMedPubMedCentralGoogle Scholar
  239. Takeuchi N, Hogeweg P (2007) Error-threshold exists in fitness landscapes with lethal mutants. BMC Evol Biol 7:15CrossRefPubMedPubMedCentralGoogle Scholar
  240. Taskin Z, Aydinoglu AU (2015) Collaborative multidisciplinary astrobiology research: a bibliometric study of the NASA astrobiology institute. Scientometrics 103:1003–1022.  https://doi.org/10.1007/s11192-015-1576-8 CrossRefGoogle Scholar
  241. Taylor T, Bedau M, Channon A, Ackley D, Banzhaf W, Beslon G, Dolson E, Froese T, Hickinbotham S, Ikegami T, McMullin B, Packard N, Rasmussen S, Virgo N, Agmon E, Clark E, McGregor S, Ofria C, Ropella G, Spector L, Stanley KO, Stanton A, Timperley C, Vostinar A, Wiser M (2016) Open-ended evolution: perspectives from the OEE workshop in York. Artif Life 22:408–423CrossRefGoogle Scholar
  242. Tuller T, Birin H, Gophna U, Kupiec M, Ruppin E (2010) Reconstructing ancestral gene content by coevolution. Genome Res 20:122–132CrossRefPubMedPubMedCentralGoogle Scholar
  243. Turing AM (1990) The chemical basis of morphogenesis. Bull Math Biol 52:153–197CrossRefGoogle Scholar
  244. Vetsigian K, Woese C, Goldenfeld N (2006) Collective evolution and the genetic code. Proc Natl Acad Sci 103:10696–10701CrossRefGoogle Scholar
  245. Virchow R (1859) Die Cellular Pathologie. August Hirschwald, BerlinGoogle Scholar
  246. Virgo, N., Egbert, M. D. & Froese, T. (2011). The role of the spatial boundary in autopoiesis. In Advances in Artificial Life: Darwin Meets von Neumann. 10th European Conference, ECAL 2009. (ed. Springer), pp. 234–241. BerlinGoogle Scholar
  247. Virgo, Ikegami McGregor (2016) Complex autocatalysis in simple chemistries. Artificial life. J Sys Chem 22: 138-152Google Scholar
  248. von Kiedrowski G, Otto S, Herdewijn P (2010) Welcome home. Systems Chemists! J Sys Chem 1:1Google Scholar
  249. von Linné (Linnaeus) C (1735/1964) Systema Naturae, Facsimile of the First edition, Edited by Engel-Ledeboer, M. S. J. & Engel, H. Nieuwkoop, B. de GraafGoogle Scholar
  250. Von Neumann J, Burks AW (1966) Theory of self-reproducing automata. IEEE Trans Neural Netw 5:3–14Google Scholar
  251. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedPubMedCentralGoogle Scholar
  252. Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution 50:967–976CrossRefGoogle Scholar
  253. Wagner CS, Roessner JD, Bobb K, Klein JT, Boyack KW, Keyton J, Rafols I, Börner K (2011) Approaches to understanding and measuring interdisciplinary scientific research (IDR): a review of the literature. J Infometr 5:14–26Google Scholar
  254. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738CrossRefGoogle Scholar
  255. Watson RA, Mills R, Buckley CL, Kouvaris K, Jackson A, Powers ST et al (2016) Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions. Evol Biol 43(4):553–581CrossRefGoogle Scholar
  256. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:1–8Google Scholar
  257. Wetter GA (1958) Der dialektische Materialismus und das Problem der Entstehung des Lebens: zur Theorie von AI Oparin. PustetGoogle Scholar
  258. Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci 114:E4602–E4611Google Scholar
  259. Wolfe-Simon F, Blum JS, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PC (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166CrossRefGoogle Scholar
  260. Wolfram S (2002) A new kind of science. Wolfram Media, ChampaignGoogle Scholar
  261. Zubarev DY, Rappoport D, Aspuru-Guzik A (2015) Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle. Sci Rep 5:1–7CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Carlos Mariscal
    • 1
  • Ana Barahona
    • 2
  • Nathanael Aubert-Kato
    • 3
    • 4
  • Arsev Umur Aydinoglu
    • 5
    • 6
  • Stuart Bartlett
    • 3
    • 7
  • María Luz Cárdenas
    • 8
  • Kuhan Chandru
    • 3
    • 9
    • 10
  • Carol Cleland
    • 11
  • Benjamin T. Cocanougher
    • 12
    • 13
  • Nathaniel Comfort
    • 14
  • Athel Cornish-Bowden
    • 8
  • Terrence Deacon
    • 15
  • Tom Froese
    • 16
    • 17
  • Donato Giovannelli
    • 3
    • 18
    • 19
    • 20
    • 21
  • John Hernlund
    • 3
  • Piet Hut
    • 3
    • 18
  • Jun Kimura
    • 22
  • Marie-Christine Maurel
    • 23
  • Nancy Merino
    • 3
    • 24
  • Alvaro Moreno
    • 25
  • Mayuko Nakagawa
    • 3
  • Juli Peretó
    • 26
  • Nathaniel Virgo
    • 3
    • 27
    • 28
  • Olaf Witkowski
    • 3
    • 18
  • H. James CleavesII
    • 3
    • 5
    • 18
    • 28
    • 29
    Email author
  1. 1.Department of Philosophy, Ecology, Evolution, and Conservation Biology (EECB) Program, and Integrative Neuroscience ProgramUniversity of Nevada, Reno (UNR)RenoUSA
  2. 2.Department of Evolutionary Biology, School of SciencesUNAMCDMXMexico
  3. 3.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  4. 4.Department of Information SciencesOchanomizu UniversityTokyoJapan
  5. 5.Blue Marble Space Institute of ScienceWashingtonUSA
  6. 6.Science and Technology Policies DepartmentMiddle East Technical University (METU)AnkaraTurkey
  7. 7.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  8. 8.CNRS, BIP, IMMAix Marseille UniversityMarseilleFrance
  9. 9.Space Science Centre (ANGKASA), Institute of Climate Change, Level 3, Research ComplexNational University of MalaysiaUKM BangiMalaysia
  10. 10.Department of Physical ChemistryUniversity of Chemistry and TechnologyPragueCzech Republic
  11. 11.Department of PhilosophyUniversity of ColoradoBoulderUSA
  12. 12.Howard Hughes Medical Institute Janelia Research CampusAshburnUSA
  13. 13.Department of ZoologyUniversity of CambridgeCambridgeUK
  14. 14.Department of the History of MedicineJohns Hopkins UniversityBaltimoreUSA
  15. 15.Department of Anthropology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  16. 16.Institute for Applied Mathematics and Systems Research (IIMAS)National Autonomous University of Mexico (UNAM)Mexico CityMexico
  17. 17.Centre for the Sciences of Complexity (C3)National Autonomous University of Mexico (UNAM)Mexico CityMexico
  18. 18.Institute for Advanced StudyPrincetonUSA
  19. 19.Department of Marine and Coastal ScienceRutgers UniversityNew BrunswickUSA
  20. 20.YHouseInc.New YorkUSA
  21. 21.Department of BiologyUniversity of Naples “Federico II”NaplesItaly
  22. 22.Department of Earth and Space ScienceOsaka UniversityOsakaJapan
  23. 23.UMR 7205-ISYEB, CNRS-MNHN-UPMCParisFrance
  24. 24.Department of Earth SciencesUniversity of Southern CaliforniaCaliforniaUSA
  25. 25.Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and SocietyUniversity of the Basque CountryDonostia-San SebastianSpain
  26. 26.Department of Biochemistry and Molecular BiologyUniversity of Valéncia and Institute for Integrative Systems Biology I2SysBio (University of Valéncia-CSIC)ValènciaSpain
  27. 27.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  28. 28.European Centre for Living TechnologyVeniceItaly
  29. 29.Center for Chemical EvolutionGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations