Advertisement

Methanogenesis on Early Stages of Life: Ancient but Not Primordial

  • Israel Muñoz-Velasco
  • Carlos García-Ferris
  • Ricardo Hernandez-Morales
  • Antonio Lazcano
  • Juli Peretó
  • Arturo BecerraEmail author
Early Evolution

Abstract

Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.

Keywords

Methanogenesis Wood-Ljungdahl pathway Archaea Last common ancestor (LCA) Methanogenic coenzymes 

Notes

Acknowledgments

We are indebted to Dr. José Alberto Campillo-Balderas for his help with the manuscript. Financial support of DGAPA-UNAM (PAPIIT-IN223916) is gratefully acknowledged. IM-V is a student from the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM) and received fellowship 415961 from CONACyT. CGF and JP acknowledge financial support from Mineco/FEDER (grant references: BFU2015-64322-C2-1-R and BIO2015-66960-C3-1-R) and the Generalitat Valenciana (grant reference: PROMETEOII/2014/065).

Author’s Contribution

Authors contributed equally to this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Supplementary material

11084_2018_9570_MOESM1_ESM.pdf (28 mb)
ESM 1 (PDF 28676 kb)
11084_2018_9570_MOESM2_ESM.pdf (49 kb)
ESM 2 (PDF 48.7 kb)

References

  1. Adam PS, Borrel G, Gribaldo S (2018) Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci U S A 201716667:E1166–E1173.  https://doi.org/10.1073/pnas.1716667115 CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bapteste É, Brochier C, Boucher Y (2005) Higher-level classification of the archaea: evolution of methanogenesis and methanogens. Archaea 1(2002):353–363.  https://doi.org/10.1155/2005/859728 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Becerra A, Delaye L, Islas S, Lazcano A (2007) The very early stages of biological evolution and the nature of the last common ancestor of the three major cell domains. Annu Rev Ecol Evol Syst 38(1):361–379.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095825 CrossRefGoogle Scholar
  5. Becerra A, Rivas M, García-Ferris C, Lazcano A, Peretó J (2014) A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways. Int Microbiol 17:91–97.  https://doi.org/10.2436/20.1501.01.211 CrossRefPubMedGoogle Scholar
  6. Berg I, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber B, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8(6):447–460.  https://doi.org/10.1038/nrmicro2365 CrossRefPubMedGoogle Scholar
  7. Berger S, Welte C, Deppenmeier U (2012) Acetate activation in Methanosaeta thermophila: characterization of the key enzymes pyrophosphatase and acetyl-CoA Synthetase. Archaea 2012:1–10.  https://doi.org/10.1155/2012/315153 CrossRefGoogle Scholar
  8. Bonch-Osmolovskaya EA (2010) High-temperature deep-subsurface microbial communities as a possible equivalent of ancient ecosystems. Paleontol J 44(7):851–859.  https://doi.org/10.1134/s0031030110070130 CrossRefGoogle Scholar
  9. Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugère J-F, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of Methanogenesis. Genome Biol Evol 5(10):1769–1780.  https://doi.org/10.1093/gbe/evt128 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borrel G, Adam PS, Gribaldo S (2016) Methanogenesis and the wood-Ljungdahl pathway: an ancient, versatile, and fragile association. Genome Biol Evol 8(6):1706–1711.  https://doi.org/10.1093/gbe/evw114 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973.  https://doi.org/10.1093/bioinformatics/btp348 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chistoserdova L (2016) Wide distribution of genes for tetrahydromethanopterin/methanofuran-linked C1 transfer reactions argues for their presence in the common ancestor of bacteria and archaea. Front Microbiol 7(SEP):1–5.  https://doi.org/10.3389/fmicb.2016.01425 CrossRefGoogle Scholar
  13. Chistoserdova L, Kalyuzhnaya MG (2018) Current Trends in Methylotrophy. Trends Microbiol xx:1–12.  https://doi.org/10.1016/j.tim.2018.01.011 CrossRefGoogle Scholar
  14. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin L-H, Lowry SR, Moser DP, Richardson PM, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within earth. Science 322(5899):275–278.  https://doi.org/10.1126/science.1155495 CrossRefPubMedGoogle Scholar
  15. Costa KC, Leigh JA (2014) Metabolic versatility in methanogens. Curr Opin Biotechnol 29(1):70–75.  https://doi.org/10.1016/j.copbio.2014.02.012 CrossRefPubMedGoogle Scholar
  16. Drake HL, Gößner AS, Daniel SL (2008) Old acetogens, new light. Ann N Y Acad Sci 1125:100–128.  https://doi.org/10.1196/annals.1419.016 CrossRefPubMedGoogle Scholar
  17. Drevland RM, Jia Y, Palmer DRJ, Graham DE (2008) Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis. J Biol Chem 283(43):28888–28896.  https://doi.org/10.1074/jbc.M802159200 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350(6259):434–438.  https://doi.org/10.1126/science.aac7745 CrossRefPubMedGoogle Scholar
  20. Ferry JG (1992) Methane from acetate. J Bacteriol 174(17):5489–5495.  https://doi.org/10.1128/jb.174.17.5489-5495.1992 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ferry JG (1993) Methanogenesis: ecology, physiology, biochemistry and genetics. Springer US, Boston.  https://doi.org/10.1007/978-1-4615-2391-8 CrossRefGoogle Scholar
  22. Ferry JG (1997) Enzymology of the fermentation of acetate to methane by Methanosarcina thermophila. Biofactors (Oxford, England) 6(1):25–35.  https://doi.org/10.1002/biof.5520060104 CrossRefGoogle Scholar
  23. Ferry JG (1999) Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23(1):13–38.  https://doi.org/10.1111/j.1574-6976.1999.tb00390.x CrossRefPubMedGoogle Scholar
  24. Ferry JG (2010) How to make a living by exhaling methane. Annu Rev Microbiol 64:453–473.  https://doi.org/10.1146/annurev.micro.112408.134051 CrossRefPubMedGoogle Scholar
  25. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37.  https://doi.org/10.1093/nar/gkr367 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fischer JD, Holliday GL, Rahman SA, Thornton JM (2010) The structures and physicochemical properties of organic cofactors in biocatalysis. J Mol Biol 403(5):803–824.  https://doi.org/10.1016/j.jmb.2010.09.018 CrossRefPubMedGoogle Scholar
  27. Fournier GP, Gogarten JP (2008) Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic clostridia. J Bacteriol 190(3):1124–1127.  https://doi.org/10.1128/JB.01382-07 CrossRefPubMedGoogle Scholar
  28. Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65(1):631–658.  https://doi.org/10.1146/annurev-micro-090110-102801 CrossRefPubMedGoogle Scholar
  29. Gao B, Gupta RS (2007) Phylogenomic analysis of proteins that are distinctive of archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8:86.  https://doi.org/10.1186/1471-2164-8-86 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Graham DE, White RH (2002) Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep 19(2):133–147.  https://doi.org/10.1039/B103714P CrossRefPubMedGoogle Scholar
  31. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of archaea: a state of the art. Philos Trans R Soc Lond Ser B Biol Sci 361(1470):1007–1022.  https://doi.org/10.1098/rstb.2006.1841 CrossRefGoogle Scholar
  32. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F (2016) Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments. Nat Microbiol 1(6):16035.  https://doi.org/10.1038/nmicrobiol.2016.35 CrossRefPubMedGoogle Scholar
  33. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1(5):16048.  https://doi.org/10.1038/nmicrobiol.2016.48 CrossRefPubMedGoogle Scholar
  34. Hügler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annu Rev Mar Sci 3:261–289.  https://doi.org/10.1146/annurev-marine-120709-142712 CrossRefGoogle Scholar
  35. Jensen RA (1976) Enzyme recruitment in evolution of new function. Annu Rev Microbiol 30(1):409–425.  https://doi.org/10.1146/annurev.mi.30.100176.002205 CrossRefPubMedGoogle Scholar
  36. Jetten MS, Stams AJ, Zehnder AJ (1989) Isolation and characterization of acetyl-coenzyme a synthetase from Methanothrix soehngenii. J Bacteriol 171(10):5430–5435.  https://doi.org/10.1128/jb.171.10.5430-5435.1989 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res 42(D1):199–205.  https://doi.org/10.1093/nar/gkt1076 CrossRefGoogle Scholar
  38. Kobashi N, Nishiyama M, Tanokura M (1999) Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. J Bacteriol 181(6):1713–1718PubMedPubMedCentralGoogle Scholar
  39. Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, Meier DV, Richter M, Tegetmeyer HE, Riedel D, Richnow H-H, Adrian L, Reemtsma T, Lechtenfeld OJ, Musat F (2016) Thermophilic archaea activate butane via alkyl-coenzyme M formation. Nature 539(7629):396–401.  https://doi.org/10.1038/nature20152 CrossRefPubMedGoogle Scholar
  40. Lessner DJ (2009) Methanogenesis biochemistry. In: eLS. John Wiley & Sons Ltd, Chichester. 1:1–11.  https://doi.org/10.1002/9780470015902.a0000573.pub2
  41. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245.  https://doi.org/10.1093/nar/gkw290 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lindahl PA, Chang B (2001) The evolution of acetyl-CoA synthase. Orig Life Evol Biosph 31(4–5):403–434.  https://doi.org/10.1023/A:1011809430237 CrossRefPubMedGoogle Scholar
  43. Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125(1):171–189.  https://doi.org/10.1196/annals.1419.019 CrossRefPubMedGoogle Scholar
  44. Mall A, Sobotta J, Huber C, Tschirner C, Kowarschik S, Bačnik K, Mergelsberg M, Boll M, Hügler M, Eisenreich W, Berg IA (2018). Reversibility of citrate synthase allows autotrophic growth of a thermophilic bacterium. Science Feb 2;359(6375):563–567. doi:  https://doi.org/10.1126/science.aao2410
  45. Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y et al (2012) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40:D115–D122.  https://doi.org/10.1093/nar/gkr1044 CrossRefPubMedGoogle Scholar
  46. Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Philos Trans R Soc Lond Ser B Biol Sci 362(1486):1887–1925.  https://doi.org/10.1098/rstb.2006.1881 CrossRefGoogle Scholar
  47. Matschiavelli N, Oelgeschläger E, Cocchiararo B, Finke J, Rother M (2012) Function and regulation of isoforms of carbon monoxide dehydrogenase/acetyl coenzyme a synthase in Methanosarcina acetivorans. J Bacteriol 194(19):5377–5387.  https://doi.org/10.1128/JB.00881-12 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Minh BQ, Nguyen MAT, Von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30(5):1188–1195.  https://doi.org/10.1093/molbev/mst024 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274.  https://doi.org/10.1093/molbev/msu300 CrossRefPubMedGoogle Scholar
  50. Nitschke W, Russell MJ (2013) Beating the acetyl coenzyme A-pathway to the origin of life. Phil Trans R Soc B 368:20120258.  https://doi.org/10.1098/rstb.2012.0258 CrossRefPubMedGoogle Scholar
  51. Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, Mori K, Kato Y, Miyazaki M, Shimamura S, Yanagawa K, Shuto A, Ohkouchi N, Fujita N, Takaki Y, Atomi H, Takai KA (2018). Primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science Feb 2;359(6375):559–563. doi: https://doi.org/10.1126/science.aao3407
  52. Peretó J (2012) Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chem Soc Rev 41(16):5394–5403.  https://doi.org/10.1039/C2CS35054H CrossRefPubMedGoogle Scholar
  53. Peretó JG, Velasco AM, Becerra A, Lazcano A (1999) Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int Microbiol 2(1):3–10PubMedGoogle Scholar
  54. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35(SUPPL. 1):61–65.  https://doi.org/10.1093/nar/gkl842 CrossRefGoogle Scholar
  55. Shin J, Song Y, Jeong Y, Cho BK (2016) Analysis of the Core genome and pan-genome of autotrophic Acetogenic Bacteria. Front Microbiol 7(Sep 28):1531.  https://doi.org/10.3389/fmicb.2016.01531 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15(4):150–155.  https://doi.org/10.1016/j.tim.2007.02.002 CrossRefPubMedGoogle Scholar
  57. Sorokin DY, Makarova KS, Abbas B, Ferrer M, Golyshin PN, Galinski EA, Ciordia S, Mena MC, Merkel AY, Wolf YI, van Loosdrecht MCM, Koonin EV (2017) Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2:17081.  https://doi.org/10.1038/nmicrobiol.2017.81 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sousa FL, Martin WF (2014) Biochemical fossils of the ancient transition from geoenergetics to bioenergetics in prokaryotic one carbon compound metabolism. BBA Bioenergetics 1837(7):964–981.  https://doi.org/10.1016/j.bbabio.2014.02.001 CrossRefPubMedGoogle Scholar
  59. Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira I, Allen JF, Lane N, Martin WF (2013) Early bioenergetic evolution. Philos Trans R Soc Lond Ser B Biol Sci 368(1622):20130088.  https://doi.org/10.1098/rstb.2013.0088 CrossRefGoogle Scholar
  60. Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357(6351):eaaf3883.  https://doi.org/10.1126/science.aaf3883 CrossRefPubMedGoogle Scholar
  61. Timmers PHA, Welte CU, Koehorst JJ, Plugge CM, Jetten MSM, Stams AJM (2017) Reverse Methanogenesis and respiration in Methanotrophic archaea. Archaea 2017:1–22.  https://doi.org/10.1155/2017/1654237 CrossRefGoogle Scholar
  62. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440(7083):516–519.  https://doi.org/10.1038/nature04584 CrossRefPubMedGoogle Scholar
  63. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P and Tyson GW (2016). Methylotrophic methanogenesis discovered in the novel archaeal phylum Verstraetearchaeota. Nature (October):1–9.  https://doi.org/10.1038/nmicrobiol.2016.170
  64. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1(9):1–8.  https://doi.org/10.1038/nmicrobiol.2016.116 CrossRefGoogle Scholar
  65. Whitman WB, Bowen TL and Boone DR (2006). The methanogenic Bacteria. In M Dworkin, S Falkow, E Rosenberg, K-H Schleifer and E Stackebrandt (Eds.) The prokaryotes volume 3: archaea. Bacteria: Firmicutes, Actinomycetes (pp. 165–207). Springer New York.  https://doi.org/10.1007/0-387-30743-5_9
  66. Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, Ettema TJG, Embley TM (2017) Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc Natl Acad Sci U S A 114(23):E4602–E4611.  https://doi.org/10.1073/pnas.1618463114 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Wolfe JM, Fournier GP (2018) Horizontal gene transfer constrains the timing of methanogen evolution. Nat Ecol Evol 2(5):897–903.  https://doi.org/10.1038/s41559-018-0513-7 CrossRefPubMedGoogle Scholar
  68. Woodcroft BJ, Boyd JA, Tyson GW (2016) OrfM: a fast open reading frame predictor for metagenomic data. Bioinformatics 32(17):2702–2703.  https://doi.org/10.1093/bioinformatics/btw241 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ycas M (1974) On earlier states of the biochemical system. J Theor Biol 44(1):145–160.  https://doi.org/10.1016/S0022-5193(74)80035-4 CrossRefPubMedGoogle Scholar
  70. Zheng K, Ngo PD, Owens VL, Yang X, Mansoorabadi SO (2016) The biosynthetic pathway of coenzyme F430 in methanogenic and methanotrophic archaea. Science 354(6310):339–342.  https://doi.org/10.1126/science.aag2947 CrossRefPubMedGoogle Scholar
  71. Zheng Y, Harris DF, Yu Z, Fu Y, Poudel S, Ledbetter RN, Fixen KR, Yang ZY, Boyd ES, Lidstrom ME, Seefeldt LC, Harwood CS (2018). A pathway for biological methane production using bacterial iron-only nitrogenase. Nat Microbiol 3(3):281–286. doi:  https://doi.org/10.1038/s41564-017-0091-5

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  2. 2.Posgrado en Ciencias BiológicasUnidad de PosgradoCiudad de MéxicoMexico
  3. 3.Departament de Bioquímica i Biologia MolecularUniversitat de ValènciaValènciaSpain
  4. 4.Institute for Integrative Systems Biology(I2SysBio, Universitat de València-CSIC)ValènciaSpain
  5. 5.Miembro de El Colegio Nacional, El Colegio NacionalCiudad de MéxicoMexico

Personalised recommendations