Origins of Life and Evolution of Biospheres

, Volume 48, Issue 4, pp 347–371 | Cite as

A Possible Prebiotic Ancestry of Porphyrin-Type Protein Cofactors

  • Hannes Lukas Pleyer
  • Henry Strasdeit
  • Stefan FoxEmail author
Prebiotic Chemistry


In previous experiments that simulated conditions on primordial volcanic islands, we demonstrated the abiotic formation of hydrophobic porphyrins. The present study focused on the question whether such porphyrins can be metalated by prebiotically plausible metal ion sources. We used water-insoluble octaethylporphyrin (H2oep) as a model compound. Experiments were conducted in a nitrogen atmosphere under cyclic wet–dry conditions in order to simulate the fluctuating environment in prebiotic rock pools. Wetting–drying proved to be a crucial factor. Significant yields of the metalloporphyrins (20–78% with respect to H2oep) were obtained from the soluble salts MCl2 (M = Mg, Fe, Co, Ni and Cu) in freshwater. Even almost insoluble minerals and rocks metalated the porphyrin. Basalt (an iron source, 11% yield), synthetic jaipurite (CoS, 33%) and synthetic covellite (CuS, 57%) were most efficient. Basalt, magnetite and FeCl2 gave considerably higher yields in artificial seawater than in freshwater. From iron sources, the highest yields, however, were obtained in an acidic medium (hydrochloric acid with an initial pH of 2.1). Under these conditions, iron meteorites also metalated the porphyrin. Acidic conditions were considered because they are known to occur during eruptions on volcanic islands. Octaethylporphyrinatomagnesium(II) did not form in acidic medium and was unstable towards dissolved Fe2+. It is therefore questionable whether magnesium porphyrins, i.e. possible ancestors of chlorophyll, could have accumulated in primordial rock pools. However, abiotically formed ancestors of the modern cofactors heme (Fe), B12 (Co), and F430 (Ni) may have been available to hypothetical protometabolisms and early organisms.


Abiotic syntheses Acidic conditions Iron Metalloporphyrins Rock pools Wet–dry cycling 



The authors are grateful to Thomas Staudacher (Observatoire volcanologique du Piton de la Fournaise, La Réunion) for assistance with sampling of the basalt and to Dr. Manfred Martin (Regierungspräsidium Freiburg; Landesamt für Geologie, Rohstoffe und Bergbau) for the basalt analysis. We also thank Dr. Beda Hofmann (Naturhistorisches Museum Bern) for the meteorite samples and Dr. Igor Puchtel (University of Maryland, College Park) for the komatiite. Special thanks are due to Prof. Wolfgang Hanke and Prof. Wolfgang Schwack (both at the Universität Hohenheim, Stuttgart) who provided the fluorescence microscopy and HPTLC equipment, respectively, and helped us with the measurements. We are also grateful to Dr. Frank Trixler (Deutsches Museum, München; School of Education, Technische Universität München; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München) who provided HLP the opportunity to perform AFM measurements during a research stay in Munich. We thank Sonja Ringer for technical assistance. HLP thanks the State of Baden-Württemberg for an LGFG doctoral fellowship.


  1. Alexy EJ, Hintz CW, Hughes HM, Taniguchi M, Lindsey JS (2015) Paley’s watchmaker analogy and prebiotic synthetic chemistry in surfactant assemblies. Formaldehyde scavenging by pyrroles leading to porphyrins as a case study. Org Biomol Chem 13:10025–10031CrossRefGoogle Scholar
  2. Al-Kathiri A, Hofmann BA, Gnos E, Eugster O, Welten KC, Krähenbühl U (2006) Shişr 043 (IIIAB medium octahedrite): the first iron meteorite from the Oman desert. Meteorit Planet Sci 41:A217–A230CrossRefGoogle Scholar
  3. Balch AL (2000) Coordination chemistry with meso-hydroxylated porphyrins (oxophlorins), intermediates in heme degradation. Coord Chem Rev 200–202:349–377CrossRefGoogle Scholar
  4. Bhugwant C, Siéja B, Bessafi M, Staudacher T, Ecormier J (2009) Atmospheric sulfur dioxide measurements during the 2005 and 2007 eruptions of the Piton de La Fournaise volcano: implications for human health and environmental changes. J Volcanol Geotherm Res 184:208–224CrossRefGoogle Scholar
  5. Borda MJ, Elsetinow AR, Schoonen MA, Strongin DR (2001) Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology 1:283–288CrossRefGoogle Scholar
  6. Buchler JW (1975) Static coordination chemistry of metalloporphyrins. In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier, Amsterdam, pp 195–202Google Scholar
  7. Callot HJ, Ocampo R (2000) Geochemistry of porphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 1. Academic Press, San Diego, pp 349–398Google Scholar
  8. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33:1–36CrossRefGoogle Scholar
  9. Deamer D (2014) The origin of life. In: Losos JB, Baum DA, Futuyma DJ, Hoekstra HE, Lenski RE, Moore AJ, Peichel CL, Schluter D, Whitlock MC (eds) The Princeton guide to evolution. Princeton University Press, Princeton, pp 120–126Google Scholar
  10. Dolphin D, Sams JR, Tsin TB, Wong KL (1976) Synthesis and Mossbauer spectra of octaethylporphyrin ferrous complexes. J Am Chem Soc 98:6970–6975CrossRefGoogle Scholar
  11. Dolphin DH, Sams JR, Tsin TB, Wong KL (1978) Mössbauer–Zeeman spectra of some octaethylporphyrinato- and tetraphenylporphinatoiron(III) complexes. J Am Chem Soc 100:1711–1718CrossRefGoogle Scholar
  12. Dyck J (1992) Reflectance spectra of plumage areas colored by green feather pigments. Auk 109:293–301CrossRefGoogle Scholar
  13. Edmonds M, Gerlach TM (2006) The airborne lava–seawater interaction plume at Kīlauea volcano, Hawai’i. Earth Planet Sci Lett 244:83–96CrossRefGoogle Scholar
  14. Evans HT Jr, Konnert JA (1976) Crystal structure refinement of covellite. Am Mineral 61:996–1000Google Scholar
  15. Forsythe JG, Yu S-S, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV (2015) Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic earth. Angew Chem Int Ed 54:9871–9875CrossRefGoogle Scholar
  16. Fox S, Strasdeit H (2013) Possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors. Astrobiology 13:578–595CrossRefGoogle Scholar
  17. Fox S, Strasdeit H (2017) Inhabited or uninhabited? Pitfalls in the interpretation of possible chemical signatures of extraterrestrial life. Front Microbiol 8:1622CrossRefGoogle Scholar
  18. Fox S, Pleyer HL, Strasdeit H (2018) An automated apparatus for the simulation of prebiotic wet–dry cycles under strictly anaerobic conditions. Int J Astrobiol 1–13, available under First View at
  19. Fraústo da Silva JJR, Williams RJP (2001) The biological chemistry of the elements, 2nd edn. Oxford University Press, Oxford, pp 436–449Google Scholar
  20. Frydman RB, Stevens E (1968) Non-enzymatic chelation of divalent metals with uroporphyrins under physiological conditions. Biochim Biophys Acta 165:167–169CrossRefGoogle Scholar
  21. Gill R (2010) Igneous rocks and processes: a practical guide. Wiley-Blackwell, Chichester Fig. 5.5.1 on p 149Google Scholar
  22. Glemser O, Schwarzmann E (1981) Kobalt, Nickel. In: Brauer G (ed) Handbuch der Präparativen Anorganischen Chemie, vol 3, 3rd edn. Ferdinand Enke, Stuttgart, pp 1659–1703Google Scholar
  23. Goff HM (1981) Iron(III) porphyrin–imidazole complexes. Analysis of carbon-13 nuclear magnetic resonance isotropic shifts and unpaired spin delocalization. J Am Chem Soc 103:3714–3722CrossRefGoogle Scholar
  24. Hazen RM (2013) Paleomineralogy of the Hadean eon: a preliminary species list. Am J Sci 313:807–843CrossRefGoogle Scholar
  25. Hodgson GW, Baker BL (1967) Porphyrin abiogenesis from pyrrole and formaldehyde under simulated geochemical conditions. Nature 216:29–32CrossRefGoogle Scholar
  26. Hofmann BA, Lorenzetti S, Eugster O, Krähenbühl U, Herzog G, Serefiddin F, Gnos E, Eggimann M, Wasson JT (2009) The Twannberg (Switzerland) IIG iron meteorites: mineralogy, chemistry, and CRE ages. Meteorit Planet Sci 44:187–199CrossRefGoogle Scholar
  27. Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68:1169–1172CrossRefGoogle Scholar
  28. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, p 110Google Scholar
  29. Ivashin NV, Shulga AM, Terekhov SN, Dzilinski K (1996) Physical and chemical transformations of μ-oxo dimers and alkoxy complexes of Fe-octaethylporphyrins in solids and in solutions. Spectrochim Acta A 52:1603–1614CrossRefGoogle Scholar
  30. Izawa MRM, Nesbitt HW, MacRae ND, Hoffman EL (2010) Composition and evolution of the early oceans: evidence from the Tagish Lake meteorite. Earth Planet Sci Lett 298:443–449CrossRefGoogle Scholar
  31. James BR (1978) Interaction of dioxygen with metalloporphyrins. In: Dolphin D (ed) The porphyrins, vol 5. Academic Press, New York, pp 205–302CrossRefGoogle Scholar
  32. Johnson EC, Dolphin D, Cushing MA Jr, Ittel SD (1980) Metalloporphines. In: Busch DH (ed) Inorganic syntheses, vol 20. Wiley, New York, pp 143–147Google Scholar
  33. Kaim W, Schwederski B, Klein A (2013) Bioinorganic chemistry: inorganic elements in the chemistry of life, 2nd edn. Wiley, Chichester, pp 22–31, 37–116, 172–177Google Scholar
  34. Kalish HR, Latos-Grażyński L, Balch AL (2000) Heme/hydrogen peroxide reactivity: formation of paramagnetic iron oxophlorin isomers by treatment of iron porphyrins with hydrogen peroxide. J Am Chem Soc 122:12478–12486CrossRefGoogle Scholar
  35. Kalish H, Camp JE, Stȩpień M, Latos-Grażyński L, Balch AL (2001) Reactivity of mono-meso-substituted iron(II) octaethylporphyrin complexes with hydrogen peroxide in the absence of dioxygen. Evidence for nucleophilic attack on the heme. J Am Chem Soc 123:11719–11727CrossRefGoogle Scholar
  36. Kareem K (2005) Komatiites of the Weltevreden formation, Barberton Greenstone Belt, South Africa: implications for the chemistry and temperature of the Archean mantle. Dissertation. Louisiana State University, 227 ppGoogle Scholar
  37. Khosropour R, Hambright P (1972) A general mechanism for metal ion incorporation into porphyrin molecules. J Chem Soc Chem Commun:13–14Google Scholar
  38. Knauth LP (1998) Salinity history of the Earth’s early ocean. Nature 395:554–555CrossRefGoogle Scholar
  39. Knauth LP (2005) Temperature and salinity history of the Precambrian Ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219:53–69CrossRefGoogle Scholar
  40. Konarev DV, Khasanov SS, Saito G, Lyubovskaya RN (2009) Design of molecular and ionic complexes of fullerene C60 with metal(II) octaethylporphyrins, MIIOEP (M = Zn, Co, Fe, and Mn) containing coordination M–N(ligand) and M–C(C60 ) bonds. Cryst Growth Des 9:1170–1181CrossRefGoogle Scholar
  41. Kumar P, Nagarajan R, Sarangi R (2013) Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS. J Mater Chem C 1:2448–2454CrossRefGoogle Scholar
  42. Lahav N, White DH (1980) A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers. J Mol Evol 16:11–21CrossRefGoogle Scholar
  43. Lahav N, White D, Chang S (1978) Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science 201:67–69CrossRefGoogle Scholar
  44. Lathe R (2004) Fast tidal cycling and the origin of life. Icarus 168:18–22CrossRefGoogle Scholar
  45. Lathe R (2006) Early tides: response to Varga et al. Icarus 180:277–280CrossRefGoogle Scholar
  46. Li W, Czaja AD, Van Kranendonk MJ, Beard BL, Roden EE, Johnson CM (2013) An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago. Geochim Cosmochim Acta 120:65–79CrossRefGoogle Scholar
  47. Liang W, Whangbo M-H (1993) Conductivity anisotropy and structural phase transition in covellite CuS. Solid State Commun 85:405–408CrossRefGoogle Scholar
  48. Lindsey JS, Ptaszek M, Taniguchi M (2009) Simple formation of an abiotic porphyrinogen in aqueous solution. Orig Life Evol Biosph 39:495–515CrossRefGoogle Scholar
  49. Lindsey JS, Chandrashaker V, Taniguchi M, Ptaszek M (2011) Abiotic formation of uroporphyrinogen and coproporphyrinogen from acyclic reactants. New J Chem 35:65–75CrossRefGoogle Scholar
  50. Mamajanov I, MacDonald PJ, Ying J, Duncanson DM, Dowdy GR, Walker CA, Engelhart AE, Fernández FM, Grover MA, Hud NV, Schork FJ (2014) Ester formation and hydrolysis during wet−dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47:1334–1343CrossRefGoogle Scholar
  51. Maricondi C, Swift W, Straub DK (1969) Thermomagnetic analysis of hemin and related compounds. J Am Chem Soc 91:5205–5210CrossRefGoogle Scholar
  52. Mazin II (2012) Structural and electronic properties of the two-dimensional superconductor CuS with Open image in new window copper. Phys Rev B 85:115133Google Scholar
  53. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188Google Scholar
  54. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12:1–51CrossRefGoogle Scholar
  55. Nozaki H, Shibata K, Ohhashi N (1991) Metallic hole conduction in CuS. J Solid State Chem 91:306–311CrossRefGoogle Scholar
  56. Ogoshi H, Watanabe E, Yoshida Z (1973) Porphyrin acids. Tetrahedron 29:3241–3245CrossRefGoogle Scholar
  57. Olasagasti F, Kim HJ, Pourmand N, Deamer DW (2011) Non-enzymatic transfer of sequence information under plausible prebiotic conditions. Biochimie 93:556–561CrossRefGoogle Scholar
  58. Pohorille A (2009) Early ancestors of existing cells. In: Rasmussen S, Bedau MA, Chen L, Deamer D, Krakauer DC, Packard NH, Stadler PF (eds) Protocells: bridging nonliving and living matter. MIT Press, Cambridge, pp 563–581Google Scholar
  59. Puchtel IS, Blichert-Toft J, Touboul M, Walker RJ, Byerly GR, Nisbet EG, Anhaeusser CR (2013) Insights into early earth from Barberton komatiites: evidence from lithophile isotope and trace element systematics. Geochim Cosmochim Acta 108:63–90CrossRefGoogle Scholar
  60. Ralphs K, Zhang C, James SL (2017) Solventless mechanochemical metallation of porphyrins. Green Chem 19:102–105CrossRefGoogle Scholar
  61. Riemer J, Hoepken HH, Czerwinska H, Robinson SR, Dringen R (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375CrossRefGoogle Scholar
  62. Rodriguez-Garcia M, Surman AJ, Cooper GJT, Suárez-Marina I, Hosni Z, Lee MP, Cronin L (2015) Formation of oligopeptides in high yield under simple programmable conditions. Nat Commun 6:8385CrossRefGoogle Scholar
  63. Saetia S, Liedl KR, Eder AH, Rode BM (1993) Evaporation cycle experiments – a simulation of salt-induced peptide synthesis under possible prebiotic conditions. Orig Life Evol Biosph 23:167–176CrossRefGoogle Scholar
  64. Saito MA, Sigman DM, Morel FMM (2003) The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg Chim Acta 356:308–318CrossRefGoogle Scholar
  65. Schneider J, Franke M, Gurrath M, Röckert M, Berger T, Bernardi J, Meyer B, Steinrück H-P, Lytken O, Diwald O (2016) Porphyrin metalation at MgO surfaces: a spectroscopic and quantum mechanical study on complementary model systems. Chem Eur J 22:1744–1749CrossRefGoogle Scholar
  66. Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS (2012a) Primordial oil slick and the formation of hydrophobic tetrapyrrole macrocycles. Astrobiology 12:1055–1068CrossRefGoogle Scholar
  67. Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS (2012b) Self-organization of tetrapyrrole constituents to give a photoactive protocell. Chem Sci 3:1963–1974CrossRefGoogle Scholar
  68. Soares ARM, Taniguchi M, Chandrashaker V, Lindsey JS (2013a) Expanded combinatorial formation of porphyrin macrocycles in aqueous solution containing vesicles. A prebiotic model. New J Chem 37:1073–1086CrossRefGoogle Scholar
  69. Soares ARM, Anderson DR, Chandrashaker V, Lindsey JS (2013b) Catalytic diversification upon metal scavenging in a prebiotic model for formation of tetrapyrrole macrocycles. New J Chem 37:2716–2732CrossRefGoogle Scholar
  70. Staudacher T, Ferrazzini V, Peltier A, Kowalski P, Boissier P, Catherine P, Lauret F, Massin F (2009) The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 184:126–137CrossRefGoogle Scholar
  71. Strasdeit H, Fox S (2013) Experimental simulations of possible origins of life: conceptual and practical issues. In: de Vera J-P, Seckbach J (eds) Habitability of other planets and satellites. Springer, Dordrecht, pp 129–144CrossRefGoogle Scholar
  72. Szutka A (1964) Porphine-like substances: probable synthesis during chemical evolution. Nature 202:1231–1232CrossRefGoogle Scholar
  73. Taniguchi M, Soares ARM, Chandrashaker V, Lindsey JS (2012) A tandem combinatorial model for the prebiogenesis of diverse tetrapyrrole macrocycles. New J Chem 36:1057–1069CrossRefGoogle Scholar
  74. Varga P, Rybicki KR, Denis C (2006) Comment on the paper “fast tidal cycling and the origin of life” by Richard Lathe. Icarus 180:274–276CrossRefGoogle Scholar
  75. Walker JCG (1982) Climatic factors on the Archean earth. Palaeogeogr Palaeoclimatol Palaeoecol 40:1–11CrossRefGoogle Scholar
  76. Walker JCG, Klein C, Schidlowski M, Schopf JW, Stevenson DJ, Walter MR (1983) Environmental evolution of the Archean–early Proterozoic earth. In: Schopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 260–263Google Scholar
  77. Wells AF (1984) Structural inorganic chemistry, 5th edn. Clarendon Press, Oxford, pp 1142–1144Google Scholar
  78. Wiberg N (ed) (2001) Holleman-Wiberg inorganic chemistry. Academic Press, San Diego, pp 195–1057Google Scholar
  79. Wood TE, Thompson A (2007) Advances in the chemistry of dipyrrins and their complexes. Chem Rev 107:1831–1861CrossRefGoogle Scholar
  80. Zahnle K, Walker JCG (1987) A constant daylength during the Precambrian era? Precambrian Res 37:95–105CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Bioinorganic Chemistry and Chemical Evolution, Institute of ChemistryUniversity of HohenheimStuttgartGermany

Personalised recommendations