Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cambrian Acyclic Domains: Counting c-singletons

  • 2 Accesses


We study the size of certain acyclic domains that arise from geometric and combinatorial constructions. These acyclic domains consist of all permutations visited by commuting equivalence classes of maximal reduced decompositions if we consider the symmetric group and, more generally, of all c-singletons of a Cambrian lattice associated to the weak order of a finite Coxeter group. For this reason, we call these sets Cambrian acyclic domains. Extending a closed formula of Galambos–Reiner for a particular acyclic domain called Fishburn’s alternating scheme, we provide explicit formulae for the size of any Cambrian acyclic domain and characterize the Cambrian acyclic domains of minimum or maximum size.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abello, J.: The weak Bruhat order of Sσ, consistent sets, and Catalan numbers. SIAM J. Discr. Math. 4(1), 1–16 (1991)

  2. 2.

    Bergeron, N., Hohlweg, C., Lange, C., Thomas, H.: Isometry classes of generalized associahedra. Sém. Lothar. Combin. B61Aa 13 pp (2009)

  3. 3.

    Billera, L.J., Filiman, P., Sturmfels, B.: Constructions and complexity of secondary polytopes. Adv. Math. 83, 155–179 (1990)

  4. 4.

    Ceballos, C., Labbé, J.-P., Stump, C.: Subword complexes, cluster complexes, and generalized multi-associahedra. J. Algebraic Combin. 39(1), 17–51 (2014)

  5. 5.

    Chameni-Nembua, C.: Règle majoritaire et distributivité dans le permutoèdre. Math. Inf. Sci. Hum. 27(108), 5–22 (1989)

  6. 6.

    de Condorcet, M.: Essai Sur L’application De L’analyse à La Probabilité Des Décisions Rendues à La Pluralité Des Voix. Imprimerie Royale, Paris (1785)

  7. 7.

    Danilov, V.I., Karzanov, A.V., Koshevoy, G.: Condorcet domains of tiling type. Discrete Appl. Math. 160(7-8), 933–940 (2012)

  8. 8.

    Devadoss, S.L.: A realization of graph associahedra. Discrete Math. 309, 271–276 (2009)

  9. 9.

    Felsner, S., Valtr, P.: Coding and counting arrangements of pseudolines. Discrete Comput. Geom. 46(3), 405–416 (2011)

  10. 10.

    Fishburn, P.C.: Acyclic sets of linear orders. Soc. Choice Welfare 14, 113–124 (1997)

  11. 11.

    Fishburn, P.C.: Acyclic sets of linear orders: a progress report. Soc. Choice Welfare 19, 431–447 (2002)

  12. 12.

    Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. of Math. 158, 977–1018 (2003)

  13. 13.

    Galambos, A., Reiner, V.: Acyclic sets of linear orders via the Bruhat orders. Soc. Choice Welfare 30(2), 245–264 (2008)

  14. 14.

    Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser Boston (1994)

  15. 15.

    Haiman, M.: Constructing the associahedron. unpublished manuscript, http://math.berkeley.edu/∼mhaiman/ftp/assoc/manuscript.pdf p. 12 (1984)

  16. 16.

    Hohlweg, C.: Permutahedra and associahedra: generalized associahedra from the geometry of finite reflection groups. In: Associahedra, Tamari Lattices and Related Structures, Prog. Math. Phys., Vol. 299, pp 129–159. Birkhäuser/Springer, Basel (2012)

  17. 17.

    Hohlweg, C., Lange, C.: Realizations of the associahedron and cyclohedron. Discrete Comput. Geom. 37(4), 517–543 (2007)

  18. 18.

    Hohlweg, C., Lange, C., Thomas, H.: Permutahedra and generalized associahedra. Adv. Math. 226(1), 608–640 (2011)

  19. 19.

    Hohlweg, C., Pilaud, V., Stella, S.: Polytopal realizations of finite type g-vector fans. Adv. Math. 328(1), 713–749 (2018)

  20. 20.

    Humphreys, J.E.: Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics vol. 29 Cambridge University Press, Cambridge (1992)

  21. 21.

    Keller, B.: Cluster algebras, quiver representations and triangulated categories. In: Triangulated Categories, London Math. Soc. Lecture Note Ser., vol. 375, pp 76–160. Cambridge University Press, Cambridge (2010)

  22. 22.

    Knuth, D.E.: Axioms and Hulls Lecture Notes in Computer Science, vol. 606. Springer, Berlin (1992)

  23. 23.

    Lange, C., Pilaud, V.: Associahedra via spines. Combinatorica 38(2), 443–486 (2018)

  24. 24.

    Lee, C.W.: The associahedron and triangulations of the n-gon. Europ. J. Combinatorics 10, 551–560 (1989)

  25. 25.

    Loday, J.L.: Realization of the Stasheff polytope. Arch. Math. 83(3), 267–278 (2004)

  26. 26.

    Manin, Y.I., Schechtmann, V.V.: Arrangements of hyperplanes, higher braid groups and higher bruhat orders. In: Algebraic Number Theory – in Honor of K. Iwasasa, Advanced Studies in Pure Mathematics, pp 289–308. Kinokuniya/Academic Press, Boca Raton (1989)

  27. 27.

    Müller-Hoissen, F., Pallo, J.M., Stasheff, J.: Associahedra, Tamari Lattices and Related Structures Progress in Mathematics, vol. 299. Birkhäuser Boston Inc, Boston, MA (2012)

  28. 28.

    Sloane, N.J.A.: The on-line encyclopedia of integer sequences. http://oeis.org(2017)

  29. 29.

    Nilsson, J.: Enumeration of basic ideals in type B Lie algebras. J. Integer Seq. 15(9), Art. 12.9.5, 30 (2012)

  30. 30.

    Petkovšek, M., Wilf, H.S., Zeilberger, D.: A = B. A K Peters ltd., Wellesley, MA (1996)

  31. 31.

    Pilaud, V., Pocchiola, M.: Multitriangulations, pseudotriangulations and primitive sorting networks. Discrete Comput. Geom. 48(1), 142–191 (2012)

  32. 32.

    Pilaud, V., Santos, F.: The brick polytope of a sorting network. Eur. J. Combin. 33(4), 632–662 (2012)

  33. 33.

    Pilaud, V., Stump, C.: Brick polytopes of spherical subword complexes and generalized associahedra. Adv. Math. 276, 1–61 (2015)

  34. 34.

    Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009(6), 1026–1106 (2009)

  35. 35.

    Postnikov, A., Reiner, V., Williams, L.: Faces of generalized permutohedra. Doc. Math. 13, 207–273 (2008)

  36. 36.

    Reading, N.: Cambrian lattices. Adv. Math. 205(2), 313–353 (2006)

  37. 37.

    Reading, N.: Clusters, Coxeter-sortable elements and noncrossing partitions. Trans. Amer. Math. Soc. 359(12), 5931–5958 (2007)

  38. 38.

    Shi, J.: The enumeration of Coxeter elements. J. Algebraic Combin. 6(2), 161–171 (1997)

  39. 39.

    Stanley, R.P.: Enumerative Combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, 2nd edn., vol. 49. Cambridge University Press, Cambridge (2012)

  40. 40.

    Stasheff, J.D.: Homotopy associativity of H-spaces. I. Trans. Amer. Math. Soc. 108(2), 275–292 (1963)

  41. 41.

    Stembridge, J.R.: On the fully commutative elements of Coxeter groups. J. Algebraic Combin. 5(4), 353–385 (1996)

  42. 42.

    Tamari, D.: Monoides Préordonnés Et Chaînes De Malcev. Ph.D. thesis, Paris (1951)

  43. 43.

    Viennot, G.X.: Heaps of Pieces. I. basic definitions and combinatorial lemmas. In: Labelle, G., Leroux, P. (eds.) Combinatoire énumérative, Lecture Notes in Math., vol. 1234, pp 312–350. Springer, Berlin (1986)

  44. 44.

    Ziegler, G.M.: Higher Bruhat orders and cyclic hyperplane arrangements. Topology 32(2), 259–279 (1993)

  45. 45.

    Ziegler, G.M.: Lectures on Polytopes, GTM, vol. 152. Springer, New York (1995)

Download references


The authors would like to thank Vic Reiner for pointing out his article with Galambos which initiated this work, and Cesar Ceballos and Vincent Pilaud for helpful discussions and their hospitality in Paris and Toronto. Finally, the authors thank the anonymous referees for their conscientious work and their numerous constructive suggestions that help to improve the article.

Author information

Correspondence to Jean-Philippe Labbé.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry and Dynamics”. The first author was partially supported by a FQRNT Doctoral scholarship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labbé, J., Lange, C.E.M.C. Cambrian Acyclic Domains: Counting c-singletons. Order (2020). https://doi.org/10.1007/s11083-019-09520-4

Download citation


  • Acyclic sets
  • Enumeration
  • Generalized permutahedra
  • Pseudoline arrangements
  • Sortable elements
  • Coxeter groups