, Volume 36, Issue 3, pp 507–510 | Cite as

A Simple Upper Bound on the Number of Antichains in [t]n

  • Shen-Fu TsaiEmail author


In this paper for t > 2 and n > 2, we give a simple upper bound on a ([t]n), the number of antichains in chain product poset [t]n. When t = 2, the problem reduces to classical Dedekind’s problem posed in 1897 and studied extensively afterwards. However few upper bounds have been proposed for t > 2 and n > 2. The new bound is derived with straightforward extension of bracketing decomposition used by Hansel for bound \(3^{n\choose \lfloor n/2\rfloor }\) for classical Dedekind’s problem. To our best knowledge, our new bound is the best when \({\Theta }\left (\left (\log _{2}t\right )^{2}\right )=\frac {6t^{4}\left (\log _{2}\left (t + 1\right )\right )^{2}}{\pi \left (t^{2}-1\right )\left (2t-\frac {1}{2}\log _{2}\left (\pi t\right )\right )^{2}}<n\) and \(t=\omega \left (\frac {n^{1/8}}{\left (\log _{2}n\right )^{3/4}}\right )\).


Partially ordered set Dedekind’s problem Monotonic Boolean function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to thank the anonymous reviewers for their valuable comments and suggestions.


  1. 1.
    Carroll, T., Cooper, J., Tetali, P.: Counting antichains and linear extensions in generalizations of the boolean lattice (2009)Google Scholar
  2. 2.
    Dedekind, R.: Über Zerlegungen Von Zahlen Durch Ihre Grössten Gemeinsamen Theiler. In: Fest-Schrift Der Herzoglichen Technischen Hochschule Carolo-Wilhelmina, pp. 1–40. Springer (1897)Google Scholar
  3. 3.
    Greene, C., Kleitman, D.J.: Strong versions of sperner’s theorem. Journal of Combinatorial Theory, Series A 20(1), 80–88 (1976)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hansel, G.: Sur le nombre des fonctions booléennes monotones de n variables. Comptes rendus hebdomadaires des séances de l’académie des sciences. Série A 262(20), 1088 (1966)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kahn, J.: Entropy, independent sets and antichains: a new approach to dedekind’s problem. Proc. Am. Math. Soc. 130(2), 371–378 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Katona, G.: A generalization of some generalizations of sperner’s theorem. Journal of Combinatorial Theory, Series B 12(1), 72–81 (1972)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kleitman, D.J., Markowsky, G.: On dedekind’s problem: the number of isotone boolean functions. ii. Trans. Am. Math. Soc. 213, 373–390 (1975)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Korshunov, A.D.: On the number of monotone boolean menge. Problemy kibernetiki 38, 5–109 (1981)zbMATHGoogle Scholar
  9. 9.
    Mattner, L., Roos, B.: Maximal probabilities of convolution powers of discrete uniform distributions. Statist. Probab. Lett. 78(17), 2992–2996 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Moshkovitz, G., Shapira, A.: Ramsey theory, integer partitions and a new proof of the erdös–szekeres theorem. Adv. Math. 262, 1107–1129 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pippenger, H.: Entropy and enumeration of boolean functions. IEEE Trans. Inf. Theory 45(6), 2096–2100 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sapozhenko, A.A.: The number of antichains in ranked partially ordered sets. Diskretnaya Matematika 1(1), 74–93 (1989)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Google Inc.KirklandUSA

Personalised recommendations