# Bottom-Up: a New Algorithm to Generate Random Linear Extensions of a Poset

## Abstract

In this paper we present a new method for deriving a random linear extension of a poset. This new strategy combines Probability with Combinatorics and obtains a procedure where each minimal element of a sequence of subposets is selected via a probability distribution. The method consists in obtaining a weight vector on the elements of *P*, so that an element is selected with a probability proportional to its weight. From some properties on the graph of adjacent linear extensions, it is shown that the probability distribution can be obtained by solving a linear system. The number of equations involved in this system relies on the number of what we have called positioned antichains, that allows a reduced number of equations. Finally, we give some examples of the applicability of the algorithm. This procedure cannot be applied to every poset, but it is exact when it can be used. Moreover, the method is quick and easy to implement. Besides, it allows a simple way to derive the number of linear extensions of a given poset.

## Keywords

Poset Linear extension Random generation Probability## Preview

Unable to display preview. Download preview PDF.

## Notes

### Acknowledgements

This paper has been supported by the Spanish Grant MTM-2015-67057.

## References

- 1.Ayyer, A., Klee, S., Shilling, A.: Combinatorial Markov chains on linear extensions. J. Algebr. Comb.
**39**(4), 853–881 (2014)MathSciNetCrossRefGoogle Scholar - 2.Bollobás, B., Brightwell, G., Sidorenko, A.: Geometrical techniques for estimating numbers of linear extensions. Eur. J. Comb.
**20**, 329–335 (1999)MathSciNetCrossRefGoogle Scholar - 3.Brightwell, G: The number of linear extensions of ranked posets. CDAM Research Report (2003)Google Scholar
- 4.Brightwell, G., Tetali, P.: The number of linear extensions of the Boolean Lattice. Order
**20**(3), 333–345 (2003)MathSciNetCrossRefGoogle Scholar - 5.Brightwell, G., Winkler, P.: Counting linear extensions. Order
**8**(3), 225–242 (1991)MathSciNetCrossRefGoogle Scholar - 6.Bubley, R., Dyer, M.: Faster random generation of linear extensions. Discret. Math.
**20**, 81–88 (1999)MathSciNetCrossRefGoogle Scholar - 7.Choquet, G: Theory of capacities. Ann. Inst. Fourier
**5**, 131–295 (1953)MathSciNetCrossRefGoogle Scholar - 8.Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
- 9.Denneberg, D.: Non-additive Measures and Integral. Kluwer Academic, Dordrecht (1994)CrossRefGoogle Scholar
- 10.Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)CrossRefGoogle Scholar
- 11.Edelman, P., Hibi, T., Stanley, R.: A recurrence for linear extensions. Order
**6**(1), 15–18 (1989)MathSciNetCrossRefGoogle Scholar - 12.Eriksson, K., Jonsson, M., Sjöstrand, J.: Markov chains on graded posets: compatibility of up-directed and down-directed transition probabilities. Order, Online Open Access. https://doi.org/10.1007/s11083-016-9420-1 (2016)CrossRefGoogle Scholar
- 13.Greene, C., Nijenhuis, A., Wilf, H.: A probabilistic proof of a formula for the number of Young Tableaux of a given shape. Adv. Math.
**31**, 104–109 (1979)MathSciNetCrossRefGoogle Scholar - 14.Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals- Theory and Applications. Number 40 in Studies in Fuzziness and Soft Computing. Physica–Verlag, Heidelberg (2000)Google Scholar
- 15.Huber, M.: Fast perfect sampling from linear extensions. Discret. Math.
**306**, 420–428 (2006)MathSciNetCrossRefGoogle Scholar - 16.Huber, M.: Near-linear time simulation of linear extensions of a height-2 poset with bounded interaction. Chic. J. Theor. Comput. Sci.
**03**, 1–16 (2014)MathSciNetzbMATHGoogle Scholar - 17.Kalvin, A.D., Varol, Y.L.: On the generation of all topological sortings. J. Algorithms
**4**(2), 150–162 (1983)MathSciNetCrossRefGoogle Scholar - 18.Karzanov, A., Khachiyan, L.: On the conductance of order Markov chains. Order
**8**(1), 7–15 (1995)MathSciNetCrossRefGoogle Scholar - 19.Knuth, D.E., Szwarcfiter, J.: A structured program to generate all topological sorting arrangements. Inform. Process. Lett.
**2**(6), 153–157 (1974)CrossRefGoogle Scholar - 20.Korsh, J.F., Lafollette, P.S.: Loopless generation of linear extensions of a poset. Order
**19**, 115–126 (2002)MathSciNetCrossRefGoogle Scholar - 21.Levin, D., Peres, Y., Wilmer, E.: Markov Mixing and Mixing Times. American Mathematical Society (2008)Google Scholar
- 22.Leydold, J., Hörmann, W.: A sweep-plane algorithm for generating random tuples in simple polytopes. J. Math. Comput.
**67**(224), 1617–1635 (1998)MathSciNetCrossRefGoogle Scholar - 23.Matousek, J: Lectures on Discrete Geometry. Springer, New York (2002)CrossRefGoogle Scholar
- 24.Nakada, K., Okamura, S.: An algorithm which generates linear extensions for a generalized Young diagram with uniform probability. DMTCS, proc. AN, pp. 801–808 (2010)Google Scholar
- 25.Neggers, J., Kim, H. S.: Basic Posets. World Scientific, Singapore (1998)CrossRefGoogle Scholar
- 26.Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput.
**23**(2), 373–386 (1994)MathSciNetCrossRefGoogle Scholar - 27.Ruskey, F.: Generating linear extensions of posets by transpositions. J. Comb. Theory, Ser. B
**54**, 77–101 (1992)MathSciNetCrossRefGoogle Scholar - 28.Stanley, R.: Two poset polytopes. Discrete Comput. Geom.
**1**(1), 9–23 (1986)MathSciNetCrossRefGoogle Scholar - 29.Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (2012)zbMATHGoogle Scholar
- 30.Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)Google Scholar
- 31.Varol, Y.L., Rotem, D.: An algorithm to generate all topological sorting arrangements. Comput. J.
**24**(1), 83–84 (1981)CrossRefGoogle Scholar - 32.Vose, M.D.: A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng.
**17**(9), 972–975 (1991)MathSciNetCrossRefGoogle Scholar - 33.Wilf, H.S.: Generating Functionology. Academic, New York (1994)Google Scholar