Order

, Volume 36, Issue 3, pp 437–462

# Bottom-Up: a New Algorithm to Generate Random Linear Extensions of a Poset

Article

## Abstract

In this paper we present a new method for deriving a random linear extension of a poset. This new strategy combines Probability with Combinatorics and obtains a procedure where each minimal element of a sequence of subposets is selected via a probability distribution. The method consists in obtaining a weight vector on the elements of P, so that an element is selected with a probability proportional to its weight. From some properties on the graph of adjacent linear extensions, it is shown that the probability distribution can be obtained by solving a linear system. The number of equations involved in this system relies on the number of what we have called positioned antichains, that allows a reduced number of equations. Finally, we give some examples of the applicability of the algorithm. This procedure cannot be applied to every poset, but it is exact when it can be used. Moreover, the method is quick and easy to implement. Besides, it allows a simple way to derive the number of linear extensions of a given poset.

## Keywords

Poset Linear extension Random generation Probability

## References

1. 1.
Ayyer, A., Klee, S., Shilling, A.: Combinatorial Markov chains on linear extensions. J. Algebr. Comb. 39(4), 853–881 (2014)
2. 2.
Bollobás, B., Brightwell, G., Sidorenko, A.: Geometrical techniques for estimating numbers of linear extensions. Eur. J. Comb. 20, 329–335 (1999)
3. 3.
Brightwell, G: The number of linear extensions of ranked posets. CDAM Research Report (2003)Google Scholar
4. 4.
Brightwell, G., Tetali, P.: The number of linear extensions of the Boolean Lattice. Order 20(3), 333–345 (2003)
5. 5.
Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)
6. 6.
Bubley, R., Dyer, M.: Faster random generation of linear extensions. Discret. Math. 20, 81–88 (1999)
7. 7.
Choquet, G: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1953)
8. 8.
Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)
9. 9.
10. 10.
Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)
11. 11.
Edelman, P., Hibi, T., Stanley, R.: A recurrence for linear extensions. Order 6(1), 15–18 (1989)
12. 12.
Eriksson, K., Jonsson, M., Sjöstrand, J.: Markov chains on graded posets: compatibility of up-directed and down-directed transition probabilities. Order, Online Open Access. (2016)
13. 13.
Greene, C., Nijenhuis, A., Wilf, H.: A probabilistic proof of a formula for the number of Young Tableaux of a given shape. Adv. Math. 31, 104–109 (1979)
14. 14.
Grabisch, M., Murofushi, T., Sugeno, M. (eds.): Fuzzy Measures and Integrals- Theory and Applications. Number 40 in Studies in Fuzziness and Soft Computing. Physica–Verlag, Heidelberg (2000)Google Scholar
15. 15.
Huber, M.: Fast perfect sampling from linear extensions. Discret. Math. 306, 420–428 (2006)
16. 16.
Huber, M.: Near-linear time simulation of linear extensions of a height-2 poset with bounded interaction. Chic. J. Theor. Comput. Sci. 03, 1–16 (2014)
17. 17.
Kalvin, A.D., Varol, Y.L.: On the generation of all topological sortings. J. Algorithms 4(2), 150–162 (1983)
18. 18.
Karzanov, A., Khachiyan, L.: On the conductance of order Markov chains. Order 8(1), 7–15 (1995)
19. 19.
Knuth, D.E., Szwarcfiter, J.: A structured program to generate all topological sorting arrangements. Inform. Process. Lett. 2(6), 153–157 (1974)
20. 20.
Korsh, J.F., Lafollette, P.S.: Loopless generation of linear extensions of a poset. Order 19, 115–126 (2002)
21. 21.
Levin, D., Peres, Y., Wilmer, E.: Markov Mixing and Mixing Times. American Mathematical Society (2008)Google Scholar
22. 22.
Leydold, J., Hörmann, W.: A sweep-plane algorithm for generating random tuples in simple polytopes. J. Math. Comput. 67(224), 1617–1635 (1998)
23. 23.
Matousek, J: Lectures on Discrete Geometry. Springer, New York (2002)
24. 24.
Nakada, K., Okamura, S.: An algorithm which generates linear extensions for a generalized Young diagram with uniform probability. DMTCS, proc. AN, pp. 801–808 (2010)Google Scholar
25. 25.
Neggers, J., Kim, H. S.: Basic Posets. World Scientific, Singapore (1998)
26. 26.
Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2), 373–386 (1994)
27. 27.
Ruskey, F.: Generating linear extensions of posets by transpositions. J. Comb. Theory, Ser. B 54, 77–101 (1992)
28. 28.
Stanley, R.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)
29. 29.
Stanley, R.: Enumerative Combinatorics. Cambridge University Press, Cambridge (2012)
30. 30.
Sugeno, M.: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)Google Scholar
31. 31.
Varol, Y.L., Rotem, D.: An algorithm to generate all topological sorting arrangements. Comput. J. 24(1), 83–84 (1981)
32. 32.
Vose, M.D.: A linear algorithm for generating random numbers with a given distribution. IEEE Trans. Softw. Eng. 17(9), 972–975 (1991)
33. 33.