, Volume 36, Issue 1, pp 1–17 | Cite as

Spectral Order on a Synaptic Algebra

  • David J. Foulis
  • Sylvia PulmannováEmail author


We define and study an alternative partial order, called the spectral order, on a synaptic algebra—a generalization of the self-adjoint part of a von Neumann algebra. We prove that if the synaptic algebra A is norm complete (a Banach synaptic algebra), then under the spectral order, A is Dedekind σ-complete lattice, and the corresponding effect algebra E is a σ-complete lattice. Moreover, E can be organized into a Brouwer-Zadeh algebra in both the usual (synaptic) and spectral ordering; and if A is Banach, then E is a Brouwer-Zadeh lattice in the spectral ordering. If A is of finite type, then De Morgan laws hold on E in both the synaptic and spectral ordering.


Synaptic algebra Jordan algebra Order unit space Spectral ordering Effect algebra Spectral resolution Brower-Zadeh poset De Morgan properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, New York (1971)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beran, L.: Orthomodular Lattices. Algebraic Approach. Academia, Prague-D. Reidel, Dordrecht (1984)zbMATHGoogle Scholar
  3. 3.
    Bohata, M., Hamhalter, J.: Star order on operator and function algebras and its nonlinear preservers. Lin. Multilin. Algebra 64, 2519–2532 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cattaneo, G., Hamhalter, J.: De Morgan property for effect algebras of von Neumann algebras. Lett. Math. Phys. 59, 234–252 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cirulis, J.: Extending the star order to Rickart rings. Lin. Mutltilin. Algebra 64, 1490–1508 (2016)MathSciNetzbMATHGoogle Scholar
  6. 6.
    de Groote, H.F.: On a canonical lattice structurs on the effect algebra of a von Neumann algebra arXiv:0410018v2 (2005)
  7. 7.
    Drazin, M.P.: Natural structures on semigroups with involution. Bull. Amer. Math. Soc. 84, 139–141 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Foulis, D.J.: Synaptic algebras. Math. Slovaca 60(5), 631–654 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logic. Found. Phys. 24, 1331–1352 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Foulis, D.J., Pulmannová, S.: Spectral resolution in an order-unit space. Rep. Math. Phys. 62(3), 323–344 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Foulis, D.J., Pulmannová, S.: Generalized Hermitian algebras. Int. J. Theor. Phys. 48, 1320–1333 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Foulis, D.J., Pulmannová, S.: Spin factors as generalized Hermitian algebras. Found Phys. 39, 237–255 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Foulis, D.J., Pulmannová, S.: Projections in a synaptic algebra. Order 27, 235–257 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Foulis, D.J., Pulmannová, S.: Regular elements in generalized Hermitian algebras. Math. Slovaca 61, 155–172 (2011)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Foulis, D., Pulmannová, S.: Type-decomposition of a synaptic algebra. Found Phys. 43, 948–986 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Foulis, D.J., Pulmannová, S.: Symmetries in synaptic algebras. Math. Slovaca 64(3), 751–776 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Foulis, D.J., Jenčová, A., Pulmannová, S.: Two projections in a synaptic algebra. Linear Algebra Appl. 478, 163–287 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Foulis, D.J., Jenčová, A., Pulmannová, S.: A projection and an effect in a synaptic algebra. Linear Algebra Appl. 485, 417–441 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Foulis, D.J., Pulmannová, S.: Commutativity in a synaptic algebra. Math. Slovaca 66, 469–482 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Foulis, D.J., Pulmannová, S.: Vector Lattices in Synaptic Algebras. arXiv:1605.06987[math.RA] (2016)
  21. 21.
    Foulis, D.J., Pulmannová, S.: Kadison’s Antilattice Theorem for a Syanptic Algebra. arXiv:1706.01719v1[math.RA] (2017)
  22. 22.
    Foulis, D.J., Pulmannová, S.: Banach synaptic algebras. arXiv:1705.01011[math.RA] (2017)
  23. 23.
    Foulis, D.J., Jenčová, A., Pulmannová, S.: A Loomis-Sikorski theorem and functional calculus for a generalized hermitian algebra. Rep. Math. Phys. 80, 255–275 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Giuntini, R., Ledda, A., Paoli, F.: A new view of effects in a Hilbert space. Stud. Logica. 104, 1145–1177 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Gudder, S.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15, 23–30 (1998)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Gudder, S.: An order for quantum observables. Math. Slovaca 56, 573–589 (2006)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gudder, S., Beltrametti, E., Bugajski, S., Pulmannová, S.: Convex and linear effect algebras. Rep. Math. Phys. 44, 359–379 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hamhalter, J.: Spectral order of operators and range projections. J. Math. Anal. Appl. 331, 1122–1134 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Hamhalter, J., Turilova, E.: Spectral order on AW*-algebras and its preservers. Lobachevski J. Math. 37, 439–448 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hamhalter, J., Turilova, E.: Quantum spectral symmetries. Int. J. Theor. Phys.
  31. 31.
    Kadison, R.: Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc. 2, 505–510 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Elementary theory, Acad. Press, New York (1983)zbMATHGoogle Scholar
  33. 33.
    Kalmbach, G.: Orthomodular Lattices. Acad. Press, London (1983)zbMATHGoogle Scholar
  34. 34.
    Kaplansky, I.: Any orthocomplemented modular lattice is a continuous geometry. Ann. Math. 61, 524–541 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li, Yuan, Xu, Xiao-Ming: The logic order on a generalized Hermitian algebra. Rep. Math. Phys. 69, 371–381 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    McCrimmon, K.: A Taste of Jordan Algebras, Ubiversitex. Springer, New York (2004)zbMATHGoogle Scholar
  37. 37.
    Murphy, G.J.: C -Algebras and Operator Theory. Acad. Press Inc., Boston (1990)zbMATHGoogle Scholar
  38. 38.
    Olson, M.: The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28, 537–544 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Veda SAV, Bratislava-Kluwer, Dordrecht (1991)zbMATHGoogle Scholar
  40. 40.
    Pulmannová, S.: A note on ideals in synaptic algebras. Math. Slovaca 62, 1091–1104 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pulmannová, S., Vinceková, E.: Remarks on the order for quantum observables. Math. Slovaca 57(6), 589–600 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Sarymsakov, T.A., Ajupov, S., Hadjiev, D., Chilin, V.I.: ‘Uporiadočennyje algebry’ FAN. Taskent. (in Russian) (1983)Google Scholar
  43. 43.
    Sherman, S.: Order in operator algebras. Amer. J. Math. 73, 227–232 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Topping, D.M.: Jordan algebras of self-adjoint operators. Mem. Amer. Math. Soc. 53, 48 (1965)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Weihua, L., Junde, W.: A representation theorem of infimum of bounded observables. J. Math. Phys. 49, 073521, 5 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of MassachusettsAmherstUSA
  2. 2.Mathematical InstituteSlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations