, Volume 35, Issue 1, pp 23–45 | Cite as

Semi-Nelson Algebras



Generalizing the well known and exploited relation between Heyting and Nelson algebras to semi-Heyting algebras, we introduce the variety of semi-Nelson algebras. The main tool for its study is the construction given by Vakarelov. Using it, we characterize the lattice of congruences of a semi-Nelson algebra through some of its deductive systems, use this to find the subdirectly irreducible algebras, prove that the variety is arithmetical, has equationally definable principal congruences, has the congruence extension property and describe the semisimple subvarieties.


Semi-Heyting algebras Semi-Nelson algebras Twist structures Heyting algebras Nelson algebras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abad, M., Cornejo, J.M., Díaz Varela, J.P.: The variety generated by semi-Heyting chains. Soft Comput. 15(4), 721–728 (2010)CrossRefMATHGoogle Scholar
  2. 2.
    Abad, M., Cornejo, J.M., Díaz Varela, J.P.: The variety of semi-Heyting algebras satisfying the equation (0→1)∨(0→1)∗∗≈. Rep. Math. Logic 46, 75–90 (2011)Google Scholar
  3. 3.
    Abad, M., Cornejo, J.M., Díaz Varela, J.P.: Semi-Heyting algebras term-equivalent to Gödel algebras. Order 2, 625–642 (2013)CrossRefMATHGoogle Scholar
  4. 4.
    Abad, M., Cornejo, J.M., Díaz Varela, P.: Free-decomposability in varieties of semi-Heyting algebras. Math. Log. Q. 58(3), 168–176 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Blok, W.J., Köhler, P., Pigozzi, D.: On the structure of varieties with equationally definable principal congruences. II. Algebra Universalis 18(3), 334–379 (1984)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Burris, S., Sankappanavar, H.P.: A course in universal algebra. Springer-Verlag, New York (1981). volume 78 of Graduate Texts in MathematicsGoogle Scholar
  7. 7.
    Cornejo, J.M.: Semi-intuitionistic logic. Stud. Logica. 98(1-2), 9–25 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cornejo, J.M.: The semi Heyting-Brouwer logic. Stud. Logica. 103(4), 853–875 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cornejo, J.M., Viglizzo, I.D.: On some semi-intuitionistic logics. Stud. Logica. 103(2), 303–344 (2015)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Day, A.: A note on the congruence extension property. Algebra Universalis 1, 234–235 (1971/72)Google Scholar
  11. 11.
    Fried, E., Grätzer, G., Quackenbush, R.: Uniform congruence schemes. Algebra Universalis 10(2), 176–188 (1980)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kalman, J.A.: Lattices with involution. Trans. Amer. Math. Soc. 87, 485–491 (1958)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Köhler, P., Pigozzi, D.: Varieties with equationally definable principal congruences. Algebra Universalis 11(2), 213–219 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kracht, M.: On extensions of intermediate logics by strong negation. J. Philos. Logic 27(1), 49–73 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nelson, D.: Constructible falsity. J. Symbolic Logic 14, 16–26 (1949)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Odintsov, S.P.: On the representation of N4-lattices. Stud. Logica. 76(3), 385–405 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rasiowa, H.: N-lattices and constructive logic with strong negation. Fund. Math. 46, 61–80 (1958)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rasiowa, H.: An algebraic approach to non-classical logics, vol. 78. North-Holland Publishing Co., Amsterdam (1974)Google Scholar
  19. 19.
    Rivieccio, U.: Implicative twist-structures. Algebra Universalis 71(2), 155–186 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Sankappanavar, H.P.: Semi-Heyting algebras: an abstraction from Heyting algebras. In: Proceedings of the 9th Dr. Antonio A. R. Monteiro Congress (Spanish), Actas Congr. Dr. Antonio A. R. Monteiro. Bahía Blanca, 2008. Univ. Nac. del Sur., pp 33–66Google Scholar
  21. 21.
    Sankappanavar, H.P.: Expansions of semi-Heyting algebras I: Discriminator varieties. Stud. Logica. 98(1-2), 27–81 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Sendlewski, A.: Some investigations of varieties of n-lattices. Stud. Logica. 43(3), 257–280 (1984)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sendlewski, A.: Nelson algebras through Heyting ones. I. Stud. Logica. 49(1), 105–126 (1990)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Sholander, M.: Postulates for distributive lattices. Canadian J. Math. 3, 28–30 (1951)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation. Stud. Logica. 36(1–2), 109–125 (1977)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Viglizzo, I. Álgebras de Nelson, Instituto De Matemática De Bahía Blanca, Universidad Nacional del Sur, 1999. Magister dissertation in Mathematics, Universidad Nacional del Sur, Bahía Blanca, available at https://sites.google.com/site/viglizzo/viglizzo99nelson (1999)

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Instituto de Matemática de Bahía BlancaUniversidad Nacional del Sur-CONICET, Departamento de Matemática -Bahía BlancaArgentina

Personalised recommendations