Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A compact 120 GHz monolithic silicon-on-silica electro-optic modulator

  • 93 Accesses

Abstract

A novel electro-optic modulator using the silicon-on-silica platform is proposed. The modulator utilizes a modified version of the gate-all-around switching mechanism which is well-known in MOSFET transistors. The waveguide silicon core is surrounded by oxide and metal to increase the effect of the applied voltage in charge depletion and accumulation and hence the optical phase shift. The modulator features a very high switching speed of \(120 \;{\text{GHz}}\), thanks to its very low capacitance, with a total insertion loss of \(4.6 \;{\text{dB}}\) and a phase-shifter length of \(500 \;\upmu{\text{m}}\). The proposed modulator can therefore serve in high speed applications such as the backbone circuits of the new 5G telecommunications networks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alavi, S.E., Soltanian, M.R.K., Amiri, I.S., Khalily, M., Supa’at, A.S.M., Ahmad, H.: Towards 5G: a photonic based millimeter wave signal generation for applying in 5G access fronthaul. Sci. Rep. 6, 1–11 (2016). https://doi.org/10.1038/srep19891

  2. Baehr-Jones, T., Ding, R., Liu, Y., Ayazi, A., Pinguet, T., Harris, N.C., Streshinsky, M., Lee, P., Zhang, Y., Lim, A.E.-J., Liow, T.-Y., Teo, S.H.-G., Lo, G.-Q., Hochberg, M.: Ultralow drive voltage silicon traveling-wave modulator. Opt. Express 20, 12014–12020 (2012). https://doi.org/10.1364/OE.20.012014

  3. Barrios, C.A.: Integrated microring resonator sensor arrays for labs-on-chips. Anal. Bioanal. Chem. 403, 1467–1475 (2012). https://doi.org/10.1007/s00216-012-5937-3

  4. Barrios, C.A., Lipson, M.: Modeling and analysis of high-speed electro-optic modulation in high confinement silicon waveguides using metal-oxide-semiconductor configuration. J. Appl. Phys. 96, 6008–6015 (2004). https://doi.org/10.1063/1.1814791

  5. Barrios, C.A., Almeida, V.R., Panepucci, R., Lipson, M.: Electrooptic modulation of silicon-on-insulator submicrometer-size waveguide devices. J. Lightwave Technol. 21, 2332–2339 (2003). https://doi.org/10.1109/JLT.2003.818167

  6. Bechtel, J.H., Menders, J., Zang, D.: Electro-optic polymer integrated optic devices and future applications. Fiber Integr. Opt. 22, 211–244 (2003). https://doi.org/10.1080/01468030390208411

  7. Bogaerts, W., de Heyn, P., van Vaerenbergh, T., de Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6, 47–73 (2012). https://doi.org/10.1002/lpor.201100017

  8. Brimont, A., Thomson, D.J., Gardes, F.Y., Fedeli, J.M., Reed, G.T., Martí, J., Sanchis, P.: High-contrast 40 Gb/s operation of a 500 μm long silicon carrier-depletion slow wave modulator. Opt. Lett. 37, 3504–3506 (2012). https://doi.org/10.1364/ol.37.003504

  9. Brooks, C., Jessop, P.E., Deng, H., Yevick, D., Tarr, N.G.: Passive silicon-on-insulator polarization-rotating waveguides. Opt. Eng. 45, 044603 (2006). https://doi.org/10.1117/1.2188408

  10. Colinge, J.P., Gao, M.H., Romano-Rodriguez, A., Maes, H., Claeys, C.: Silicon-on-insulator “gate-all-around device.” In: International Technical Digest on Electron Devices, pp. 595–598. IEEE (1990)

  11. Debnath, K., Thomson, D.J., Zhang, W., Khokhar, A.Z., Littlejohns, C., Byers, J., Mastronardi, L., Husain, M.K., Ibukuro, K., Gardes, F.Y., Reed, G.T., Saito, S.: All-silicon carrier accumulation modulator based on a lateral metal-oxide-semiconductor capacitor. Photonics Res. 6, 373–379 (2018). https://doi.org/10.1364/prj.6.000373

  12. Ding, J., Chen, H., Yang, L., Zhang, L., Ji, R., Tian, Y., Zhu, W., Lu, Y., Zhou, P., Min, R., Yu, M.: Ultra-low-power carrier-depletion Mach–Zehnder silicon optical modulator. Opt. Express 20, 7081–7087 (2012)

  13. Gad, M., Yevick, D., Jessop, P.E.: Tunable polymer/silicon over insulator ring resonators. Opt. Eng. 47, 124601 (2008). https://doi.org/10.1117/1.3050355

  14. Gad, M., Yevick, D., Jessop, P.: Compound ring resonator circuit for integrated optics applications. J. Opt. Soc. Am. A 26, 2023–2032 (2009). https://doi.org/10.1364/josaa.26.002023

  15. Gad, M., Ackert, J., Yevick, D., Chrostowski, L., Jessop, P.E.: Ring resonator wavelength division multiplexing interleaver. J. Lightwave Technol. 29, 2102–2108 (2011)

  16. Gad, M., Zaki, A., Sabry, Y.M.: Silicon photonic mid-infrared grating coupler based on silicon-on-insulator technology. In: Proceedings of National Radio Science Conference NRSC, pp. 400–406 (2017). https://doi.org/10.1109/nrsc.2017.7893509

  17. Gardes, F.Y., Thomson, D.J., Emerson, N.G., Reed, G.T.: 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt. Express 19, 11804–11814 (2011). https://doi.org/10.1364/oe.19.011804

  18. Green, W.M., Rooks, M.J., Sekaric, L., Vlasov, Y.A.: Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15, 17106–17113 (2007). https://doi.org/10.1364/oe.15.017106

  19. Hadian Siahkal-Mahalle, B., Abedi, K.: Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal. Opt. Quantum Electron. 51, 1–15 (2019). https://doi.org/10.1007/s11082-019-1835-7

  20. Halir, R., Ortega-Moñux, A., Schmid, J.H., Alonso-Ramos, C., Lapointe, J., Xu, D.X., Wangüemert-Pérez, J.G., Molina-Fernández, Í., Janz, S.: Recent advances in silicon waveguide devices using sub-wavelength gratings. IEEE J. Sel. Top. Quantum Electron. 20, 279–291 (2014). https://doi.org/10.1109/jstqe.2013.2293754

  21. Horikawa, T., Shimura, D., Mogami, T.: Low-loss silicon wire waveguides for optical integrated circuits. MRS Commun. 6, 9–15 (2016). https://doi.org/10.1557/mrc.2015.84

  22. Keil, U.D., Liu, A., Hodge, D., Rubin, D., Samara-Rubio, D., Franck, T., Liao, L., Morse, M.: High speed silicon Mach–Zehnder modulator. Opt. Express 13, 3129–3135 (2005). https://doi.org/10.1364/opex.13.003129

  23. Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., Cohen, R., Izhaky, N., Paniccia, M.: 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007). https://doi.org/10.1049/el:20072253

  24. Liu, G.-D., Zhai, X., Xia, S.-X., Lin, Q., Zhao, C.-J., Wang, L.-L.: Toroidal resonance based optical modulator employing hybrid graphene-dielectric metasurface. Opt. Express 25, 26045–26054 (2017). https://doi.org/10.1364/oe.25.026045

  25. Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Van Thourhout, D., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold, J.: High-speed plasmonic phase modulators. Nat. Photonics 8, 229–233 (2014). https://doi.org/10.1038/nphoton.2014.9

  26. Okamoto, H.: Fundamentals of Optical Waveguides, 2nd edn. Elsevier, New York (2005)

  27. Pascher, W., Den Besten, J.H., Caprioli, D., Leijtens, X., Smit, M., Van Dijk, R.: Modelling and design of a travelling-wave electro-optic modulator on InP. Opt. Quantum Electron. 35, 453–464 (2003). https://doi.org/10.1023/A:1022917605267

  28. Qu, S., Ma, C., Wang, S., Liu, H., Dong, L.: Modulation speed limits of a graphene-based modulator. Opt. Quantum Electron. 50, 1–11 (2018). https://doi.org/10.1007/s11082-018-1324-4

  29. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Silicon optical modulators. Nat. Photonics 4, 518–526 (2010). https://doi.org/10.1038/nphoton.2010.179

  30. Soref, R.A., Bennett, B.R.: Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987)

  31. Thomson, D.J., Gardes, F.Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., Fedeli, J.-M., Reed, G.T.: High contrast 40 Gbit/s optical modulation in silicon. Opt. Express 19, 11507–11516 (2011). https://doi.org/10.1364/oe.19.011507

  32. Van Member, V., Ibrahim, T.A., Absil, P.P., Johnson, F.G., Grover, R., Ho, P.T.: Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quantum Electron. 8, 705–713 (2002). https://doi.org/10.1109/JSTQE.2002.1016376

  33. Wang, J., Zhou, L., Zhu, H., Yang, R., Zhou, Y., Liu, L., Wang, T., Chen, J.: Silicon high-speed binary phase-shift keying modulator with a single-drive push–pull high-speed traveling wave electrode. Photonics Res. 3, 58–62 (2015). https://doi.org/10.1364/PRJ.3.000058

  34. Watts, M.R., Zortman, W.A., Trotter, D.C., Young, R.W., Lentine, A.L.: Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron. 16, 159–164 (2010). https://doi.org/10.1109/JSTQE.2009.2035059

  35. Weigel, P.O., Zhao, J., Fang, K., Al-Rubaye, H., Trotter, D., Hood, D., Mudrick, J., Dallo, C., Pomerene, A.T., Starbuck, A.L., DeRose, C.T., Lentine, A.L., Rebeiz, G., Mookherjea, S.: Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018). https://doi.org/10.1364/OE.26.023728

  36. www.Lumerical.com: www.Lumerical.com, https://www.lumerical.com/

  37. Xiao, X., Xu, H., Li, X., Li, Z., Chu, T., Yu, Y., Yu, J.: High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt. Express 21, 4116–4125 (2013). https://doi.org/10.1364/oe.21.004116

  38. Zhang, Y., Yang, S., Lim, A.E.-J., Lo, G.-Q., Galland, C., Baehr-Jones, T., Hochberg, M.: A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 21, 1310–1316 (2013). https://doi.org/10.1364/OE.21.001310

  39. Ziebell, M., Marris-Morini, D., Rasigade, G., Fédéli, J.-M., Crozat, P., Cassan, E., Bouville, D., Vivien, L.: 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Opt. Express 20, 10591–10596 (2012). https://doi.org/10.1364/oe.20.010591

Download references

Author information

Correspondence to Michael Gad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahrous, H., Fedawy, M., El Sabbagh, M. et al. A compact 120 GHz monolithic silicon-on-silica electro-optic modulator. Opt Quant Electron 52, 111 (2020). https://doi.org/10.1007/s11082-020-2239-4

Download citation

Keywords

  • Silicon photonics
  • Integrated optics
  • Electro-optic modulators