Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Determination of the kinetic parameters of glycerol diffusion in the gingival and dentinal tissue of a human tooth using optical method: in vitro studies

Abstract

Due to the significant development of various optical technologies and methods used both for non-invasive diagnostics of biological tissues and for optimizing the protocols of photodynamic therapy, photothermal destruction, optical biopsy, tomography, etc., the problem of increasing of the light penetration depth into biological tissues is urgent, which is solved by the use of immersion agents, including hyperosmotic agents, such as glycerol. Moreover, the determination of the quantitative characteristics of the diffusion of immersion agents in biological tissues is important. In this work, we determined the effective diffusion coefficient of 99.5% glycerol in the tissue of the gingival mucosa and human dentin in vitro, which amounted to (1.78 ± 0.28) × 10−6 cm2/s (5.86 ± 0.40) × 10−7 cm2/s. The method is based on recording the kinetics of changes in the diffuse reflection spectra and applying the free diffusion model.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Anderson, R.R., Parrish, J.A.: The optics of human skin. J. Invest. Dermatol. 77, 13–19 (1981)

  2. Bargo, P.R., Prahl, S.A., Goodell, T.T., et al.: In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy. J. Biomed. Opt. 10(3), 034018–034026 (2005)

  3. Bashkatov, A.N., Genina, E.A., Tuchin, V.V.: Optics and spectroscopy in biophysics and medicine. Opt. Spectrosc. 120(1), 3–5 (2016)

  4. Bashkatov, A.N., Genina, E.A., Tuchin, V.V.: Determination of glucose diffusion in the dura mater of man. News of the Saratov University, New Series. Phys. Ser. 18(1), 32–45 (2018)

  5. Bolton, F., Bernat, A., Bar-Am, K., et al.: Portable, low-cost multispectral imaging system: design, development, validation, and utilization. J. Biomed. Opt. 23(12), 121612–121621 (2018)

  6. Bykov, V.L.: Functional morphology of the epithelial barrier of the oral mucosa. Dentistry. 3, 12–16 (1997)

  7. Carneiro, I., Carvalho, S., Henrique, R., et al.: A robust ex vivo method to evaluate the diffusion properties of agents in biological tissues. J. Biophot. 12, e201800333–e201800342 (2019)

  8. Choo-Smith, L., Dong, C.S., Cleghorn, B., Hewko, M.: Shedding new light on early caries detection. JCDA. 74(10), 913–918 (2009)

  9. Genina, E.A., Bashkatov, A.N., Chikina, E.A., et al.: Diffusion of methylene blue in the mucous membrane of the maxillary sinus of a person. Biophysics. 52(6), 1104–1111 (2007)

  10. Genina, E.A., Bashkatov, A.N., Tuchin, V.V.: Study of the diffusion of the photodynamic dye of indocyanine green in the skin using backscattering spectroscopy. Quantum Electron. 44(7), 689–695 (2014)

  11. Genina, E.A., Bashkatov, A.N., Tuchin, V.V.: Optical clearing of human dura mater by glucose solutions. J. Biomed. Photon. Eng. 3(1), 010309-010315 (2017)

  12. Grigoriev, I.S., Meilikhov, E.Z.: Physical quantities. Handbook M.: Energoatomizdat. 1232–1243 (1991)

  13. Grisimov, V., Radlinsky, S.: Biomechanics of teeth and restorations. DentArt: J. Sci. Art Dent. 2, 42–48 (2006)

  14. Hosking, A., Coakley, B., Chang, D., et al.: Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers Surg. Med. 51(3), 214–222 (2019)

  15. Johns, M., Giller, C.A., Liu, H.: Determination of hemoglobin oxygen saturation from turbid media using reflectance spectroscopy with small source-detector separation. Appl. Spectroscopy. 55(12), 1686–1694 (2001)

  16. Kienle, A., Michels, R., Hibst, R.: Magnification—a new look at a long-known optical property of dentin. J. Dental Research. 85(10), 955–962 (2006)

  17. Koshoji, N.H., Bussadori, S.K., Bortoletto, C.C., Prates, R.A., Oliveira, M.T., Deana, A.M.: Laser speckle imaging: a novel method for detecting dental erosion. J. PLOS ONE. 10(2), 1–9 (2015)

  18. Kotyk, A., Janacek, K.: Membrane transport. M.: Mir. 344 (1980)

  19. Larin, K.V., Ghosn, M.G., Bashkatov, A.N., Genina, E.A., Trunina, N.A., Tuchin, V.V.: Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J. Sel. Top. Quantum Electron. 18(3), 1244–1259 (2011)

  20. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901–010912 (2014)

  21. Milanic, M., Paluchowski, L., Randeberg, L.: Hyperspectral imaging for detection of arthritis: feasibility and prospects. J. Biomed. Opt. 20(9), 096011–096019 (2015)

  22. Miyake, Y., Tsumura, N., Takeya, M., et al.: Applications of color image processing based on spectral information. Digit. Color Imag. Biomed. 3, 15–32 (2001)

  23. Mohanraj, M., Prabhu, V.R., Senthil, R.: Diagnostic methods for early detection of dental caries–a review. Int. J. Pedod. Rehabil. 1(1), 29–36 (2016)

  24. Pretty, I.A.: Caries detection and diagnosis: novel technologies/I. J. Dent. 34, 727–739 (2006)

  25. Salomatina, E., Jiang, B., Novak, J., et al.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026–064034 (2006)

  26. Sdobnov, AYu., Genina, E.A., Bashkatov, A.N., et al.: Recent progress in tissue optical clearing for spectroscopic application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 197, 216–229 (2018)

  27. Selifonov, A.A., Tuchin, V.V.: Study of the diffusion of methylene blue in the dentin of a human tooth. Biophysics 63(6), 1211–1219 (2018)

  28. Trunina, N.A., Lychagov, V.V., Tuchin, V.V.: OCT monitoring of diffusion of water and glycerol through tooth dentine in different geometry of wetting. Proc. SPIE. 7563–7574 (2010)

  29. Tuchin, V.V.: Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd edn. SPIE Press, Bellingham, WA (2015)

  30. Tuchin, V.V., Bashkatov, A.N., Genina, E.A., et al.: In vivo investigation of the o investigation of the immersion-liquid-induced human skin clearing dynamics. Tech. Phys. Lett. 27(6), 489–493 (2001)

  31. Tuchina, D.K., Genin, V.D., Bashkatov, A.N., et al.: Optical clearing of skin tissue ex vivo with polyethylene glycol. Opt. Spectrosc. 120(1), 28–35 (2016)

  32. Tuchina, D.K., Timoshina, P.A., Tuchin, V.V., et al.: Kinetics of skin optical clearing at topical application of 40%-glucose: ex vivo and in vivo studies. IEEE J. Sel. Top. Quant. Electron. 25(1), 7200508–7200515 (2019)

  33. Valdes, P., Jacobs, V., Wilson, B., et al.: System and methods for wide-field quantitative fluorescence imaging during neurosurgery. Opt. Lett. 38(15), 2786–2788 (2013)

  34. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003)

  35. Wahabzada, M., Besser, M., Khosravani, M., et al.: Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering. PLoS ONE 12(12), e0186425–e0186434 (2017)

  36. Wild, T., Becker, M., Winter, J., et al.: Hyperspectral imaging of tissue perfusion and oxygenation in wounds: assessing the impact of a micro capillary dressing. J. Wound Care. 27(1), 38–51 (2018)

  37. Wisotzky, E., Uecker, F., Arens, P., et al.: Intraoperative hyperspectral determination of human tissue properties. J. Biomed. Opt. 23(9), 091409–0914116 (2018)

  38. Yudovsky, D., Pilon, L.: Retrieving skin properties from in vivo spectral reflectance measurements. J. Biophotonics 4(5), 305–314 (2011)

Download references

Acknowledgements

The authors are grateful to Dr. Skibina Y. S. from SPE LLC “Nanostructural Glass Technology” for the assistance in obtaining dentin samples, as well as to Professor Aleshkina O. Yu., Head of the Department of Human Anatomy of Saratov State Medical University, for providing samples of human gingiva. VVT is thankful for support by the Russian Foundation for Basic Research, 17-00-00272 (17-00- 00275 (K)).

Author information

Correspondence to A. A. Selifonov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any research involving people as subjects of research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Fundamentals of Laser Assisted Micro- and Nanotechnologies.

Guest edited by Tigran Vartanyan, Vadim Veiko, Andrey Belikov and Eugene Avrutin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selifonov, A.A., Tuchin, V.V. Determination of the kinetic parameters of glycerol diffusion in the gingival and dentinal tissue of a human tooth using optical method: in vitro studies. Opt Quant Electron 52, 123 (2020). https://doi.org/10.1007/s11082-020-2234-9

Download citation

Keywords

  • Gingival tissue
  • Dentin
  • Glycerol
  • Molecular diffusion
  • Diffuse reflection spectra
  • Optical clearing