Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Study of RbCl quantum pseudo-dot qubits using Shannon and Laplace entropies

  • 15 Accesses

Abstract

In this work, an electron was considered which is coupled to the LO-phonon in RbCl quantum pseudo-dot. The Pekar variational method was used to calculate the eigenenergies and eigenfunctions of the ground and the first-excited states of the system. Two different entropies were considered, the Shannon and Laplace, to study decoherence of RbCl pseudodot qubit for different parameters. According to the obtained results, it is found that the entropy has the oscillatory periodic evolution as a function of the time due to the form of the confinement potential. It is also found that the entropies oscillate under a sinusoidal envelope with increasing the confinement parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Barkhouse, D.A., Debnath, R., Kramer, I.J., Zhitomirsky, D., Pattantyus-Abraham, A.G., Levina, L., Etgar, L., GrÄatzel, M., Sargent, E.H.: Depleted bulk heterojunction colloidal quantum dot photovoltaics. Adv. Mater. 23, 3134–3138 (2011)

  2. Chen, Y.J., Xiao, J.L.: The temperature effect of the parabolic linear bound potential quantum dot qubit. Acta Phys. Sin. 57, 6758–6762 (2008)

  3. Feng, L.Q., Xiao, J.L.: The effects of temperature and electric field on the properties of the polaron in a RbCl quantum pseudodot. Opt. Quantum Electron. 48, 459 (2016)

  4. Feng, L.Q., Xiao, J.L.: The effects of magnetic field and hydrogen-like impurity on RbCl quantum pseudodot qubit. Opt. Quantum Electron. 49, 304 (2017)

  5. Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

  6. Hansom, J., Carsten, H., Schulte, H., Gall, C.L., Matthiesen, C., Clarke, E., Hugues, M., Taylor, M.J., Atature, M.: Environment-assisted quantum control of a solid-state spin via coherent dark states. Nat. Phys. 10, 725–730 (2014)

  7. Ikhdair, S.M., Hamzavi, M.: A quantum pseudodot system with two-dimensional pseudoharmonic oscillator in external magnetic and Aharonov–Bohm fields. Phys. B 407, 4198–4207 (2012)

  8. Khordad, R., Ghanbari, A.: Effect of phonons on optical properties of RbCl quantum pseudodot qubits. Opt. Quantum Electron. 49, 76 (2017)

  9. Khordad, R., Rastegar Sedehi, H.R.: Application of different entropies to study of bound magnetopolaron in an asymmetric quantum dot. Indian J. Phys. 91, 825–831 (2017a)

  10. Khordad, R., Rastegar Sedehi, H.R.: Application of non-extensive entropy to study of decoherence of RbCl quantum dot qubit: Tsallis entropy. Superlattices Microstruct. 101, 559–566 (2017b)

  11. Khordad, R., Vaseghi, B.: Magnetic properties in three electrons under Rashba spin–orbit interaction and magnetic field. Int. J. Quantum Chem. 119, 1–10 (2019a)

  12. Khordad, R., Vaseghi, B.: Effects temperature, pressure and spin–orbit interaction simultaneously on third harmonic generation of wedge-shaped quantum dots. Chin. J. Phys. 59, 473–480 (2019b)

  13. Khordad, R., Mirhosseini, B., Bahramiyan, H.: Effect of electron–phonon interaction on the third-harmonic generation in a quantum pseudodot. Opt. Quantum Electron. 48, 122 (2016)

  14. Khordad, R., Rastegar Sedehi, H.R., Bahramiyan, H.: Simultaneous effects of impurity and electric field on entropy behavior in double cone-like quantum dot. Commun. Theor. Phys. 69, 95–100 (2018)

  15. Landau, L.D., Pekar, S.I.: Effective mass of a polaron. Zh. Eksp. Teor. Fiz. 18, 419–423 (1948)

  16. Li, N., Guo, K.X., Shao, S.: Polaron effects on the optical rectification in a two-dimensional quantum pseudodot system. Opt. Quantum Electron. 44, 493–502 (2012)

  17. Li, X., Bighin, G., Yakaboylu, E., Lemeshko, M.: Variational approaches to quantum impurities: from the Fröhlich polaron to the angulon. Mol. Phys. 117, 1981–1988 (2019)

  18. Mosca, M.: Quantum Algorithms Computational Complexity. Springer, New York (2012)

  19. Nielsen, M.A., Chang, I.L.: Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  20. Passante, G., Moussa, O., Trottier, D.A., Laamme, R.: Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84, 044302 (2011)

  21. Pekar, S.I.: Untersuchungen uber die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)

  22. Pekar, S.I., Deigen, M.F.: Quantum states and optical transitions of electron in a polaron and at a color center of a crystal. Zh. Eksp. Teor. Fiz. 18, 481–486 (1948)

  23. Roloff, R., Eissfeller, T., Eissfeller, T., Vogl, P.: Electric g tensor control and spin echo of a hole-spin qubit in a quantum dot molecule. New J. Phys. 12, 093012 (2010)

  24. Schindler, P., Barreiro, J.T., Monz, T., Nebendahl, V., Nigg, D., Chwalla, M., Hennrich, M., Blatt, R.: Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011)

  25. Sun, Y., Xiao, J.L.: The magnetic field effect on the coherence time of qubit in RbCl crystal quantum pseudodot. Opt. Quantum Electron. 51, 110 (2019)

  26. Sun, Y., Ding, Z.H., Xiao, J.L.: The effect of phonons in RbCl quantum pseudodot qubits. J. Electron. Mater. 45, 3576–3580 (2016)

  27. Sun, Y., Ding, Z.H., Xiao, J.L.: Temperature effects of electric field on the first excited state of strong coupling polaron in a CsI quantum pseudodot. Commun. Theor. Phys. 67, 337–340 (2017)

  28. Susan, S., Hanmandlu, M.: A non-extensive entropy feature and its application to texture classification. Neurocomputing 120, 214–225 (2016)

  29. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Srensen, A.S., Hemmer, R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

  30. Wang, Z.W., Xiao, J.L.: Parabolic linear bound potential quantum dot qubit and its optical phonon effect. Acta Phys. Sin. 56, 678–682 (2007)

  31. Wang, Z.W., Li, W.P., Yin, J.W., Xiao, J.L.: Properties of parabolic linear bound potential and Coulomb bound potential quantum dot qubit. Commun. Theor. Phys. 49, 311–314 (2008)

  32. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012)

  33. Xiao, J.L.: The effect of electric field on an asymmetric quantum dot qubit. Quantum Inf. Process. 12, 3707–3716 (2013)

  34. Xiao, J.L.: Effects of electric field and temperature on RbCl asymmetry quantum dot qubit. J. Phys. Soc. Jpn. 83, 034004 (2014a)

  35. Xiao, J.L.: Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots. Superlattices Microstruct. 70, 39–45 (2014b)

  36. Xiao, J.L.: The effect of magnetic field on RbCl quantum pseudodot qubit. Mod. Phys. Lett. B 29, 1550098 (2015)

  37. Xiao, J.L.: The effect of Coulomb impurity potential on the coherence time of RbCl quantum pseudodot qubit. J. Low Temp. Phys. 195, 442–449 (2019)

Download references

Author information

Correspondence to M. Servatkhah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Servatkhah, M. Study of RbCl quantum pseudo-dot qubits using Shannon and Laplace entropies. Opt Quant Electron 52, 126 (2020). https://doi.org/10.1007/s11082-020-2229-6

Download citation

Keywords

  • Quantum pseudodot
  • Qubit
  • Shannon Entropy
  • Laplace Entropy