Advertisement

3D control stretched length of lambda-phage WLC DNA molecule by nonlinear optical tweezers

  • Thang Nguyen ManhEmail author
  • Quy Ho Quang
  • Thanh Thai Doan
  • Tuan Doan Quoc
  • Viet Do Thanh
  • Khoa Doan Quoc
Article

Abstract

In this paper, the general Langevin equations of motion for the polystyrene bead linked to the lambda-phage worm-like chain DNA molecule embedded in the fluid under the nonlinear optical tweezers is derived in 3D space. Using the finite difference method, the dynamical properties of the bead trapped by the nonlinear optical tweezers using a thin layer of Acid Blue 29 are numerically studied. Results in, the stretched length of the lambda-phage worm-like chain DNA molecule can be controlled in 3D space by finely tuning of the laser power.

Keywords

Lasers Instruments Measurement and metrology Nonlinear optics Optical devices Biophysics 

Notes

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.03-2018.342.

References

  1. Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)ADSCrossRefGoogle Scholar
  2. Bauman, C.G., et al.: Stretching of single collapsed DNA molecule. Biophys. J. 78, 1965–1978 (2000)ADSCrossRefGoogle Scholar
  3. Dufresne, R., Grier, D.G.: Optical tweezer arrays and optical substrates created with diffractive optics”. Rev. Sci. Instrum. 69, 1974–1977 (1998)ADSCrossRefGoogle Scholar
  4. European Network of Excellence for Biophotonics: Acousto-Optical Deflectors for Optical Tweezer Arrays. Networking for Better Health Care. http://www.photonics4life.eu/lavout/set/consortium/P4L-DB/all-items/ (2014)
  5. Fu, W.B., Wang, X.L., Zhang, X.H., Ran, S.Y., Yan, J., ad Li, M.: Compaction dynamics of single DNA molecules under tension. J. Am. Chem. Soc. 128, 15040–15041 (2006)CrossRefGoogle Scholar
  6. Gross, P., Laurens, N., Oddershede, L.B., Bockelmann, U., Peterman, E.J.G., Wuite, G.J.L.: Quantifying how DNA stretches, melts and changes twist under tension. Nat. Phys. 11, 731–736 (2011)CrossRefGoogle Scholar
  7. Hao, Y., Canavan, C., Susan, S.T., Rodrigo, A.M.: Integrated method to attach DNA handles and functional select proteins to study folding and protein-ligand interaction with optical tweezers. Sci. Rep. 7, 1–8 (2017)CrossRefGoogle Scholar
  8. Ho, Q.Q., Mai, V.L., Hoang, D.H., Zhuang, D.: The simulation of the stabilizing process of dielectric nanoparticle in optical trap using counter-propagating pulsed laser beams. Chin. Opt. Lett. 8(3), 332–334 (2010)ADSCrossRefGoogle Scholar
  9. Ho, Q.Q., Thai, D.T., Doan, Q.T., Nguyen, M.T.: Nonlinear optical tweezers for longitudinal control of dielectric particles. Opt. Commun. 421, 94–98 (2018)CrossRefGoogle Scholar
  10. Huisstede, H.G.: Scanning Probe Optical Tweezers: A New Tool to Study DNA-Protein Interaction. Febodruk B.V., Enschede (2006)Google Scholar
  11. Kalantarifard, F., Elahi, P., Makey, G., Maragò, M.O., Ilday, F.O., Volpe, G.: Intracavity optical trapping of microscopic particles in a ring-cavity fiber laser. Nat. Commun. 10, 2683 (2019)ADSCrossRefGoogle Scholar
  12. MacDonald, M.P., Paterson, L., Sibbett, W., Dholakia, K., Bryant, P.E.: Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap. Opt. Lett. 26, 863–865 (2002)ADSCrossRefGoogle Scholar
  13. Mangeol, P., Cote, D., Bizebard, T., Legrand, O., Bockelmann, U.: Probing DNA and RNA single molecules with a double optical tweezer. Eur. Phys. E 19, 311–317 (2006)CrossRefGoogle Scholar
  14. Neuman, C., Block, S.M.: Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004)ADSCrossRefGoogle Scholar
  15. Nguyen, L.T., et al.: The numerical methods for analyzing the Z-scan data. J. Nonlinear Opt. Phys. Mat. 23, 1450020 (2014)ADSCrossRefGoogle Scholar
  16. Saleh, E.A., Teich, M.C.: Fundamentals of Photonics. Wiley, Hoboken (1991)CrossRefGoogle Scholar
  17. Shabestari, M.H., Meijering, A.E.C., Roos, W.H., Wuite, G.J.L., Peterman, E.J.G.: Recent advance in biological single-molecule applications of optical tweezers and fluorescence microscopy. Method Enzymol. 582, 85–115 (2017)CrossRefGoogle Scholar
  18. Tanaka, Y., Kawada, H., Tsutsui, S., Ishikawa, M., Kitajima, H.: Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques. Opt. Express 17, 24102–24111 (2009)ADSCrossRefGoogle Scholar
  19. Thai, D.T., Chu, V.L., Ho, Q.Q.: Recorrection stretch function of the spring-like elastic DNA molecules. Int. J. Eng. Innov. Technol. (IJEIT) 3(9), 1–4 (2014)Google Scholar
  20. Thai, D.T., Doan, Q.K., Bui, X.K., Ho, Q.Q.: 3D controlling the bead linked to DNA molecule in a single-beam nonlinear optical tweezers. Opt. Quant. Electron. 48, 561 (2016)CrossRefGoogle Scholar
  21. Thai, D.T., Doan, Q.K., Ho, Q.Q.: Acousto-optical tweezers for stretch of DNA molecule. Opt. Quant. Electron. 50, 51 (2018)CrossRefGoogle Scholar
  22. Trung, T.D., Kien, B.X., Tung, N.T., Quy, H.Q.: Dynamics of polystyrene beads linked to DNA molecules under single optical tweezers: a numerical study using full normalized Langevin equation. J. Nonlinear Opt. Phys. Mater. 25(4), 1650054 (2016)ADSCrossRefGoogle Scholar
  23. Volpe, G., Volpe, G.: Simulation of Brownian particle in an optical trap. Am. J. Phys. 81, 224–230 (2013)ADSCrossRefGoogle Scholar
  24. Wang, R.C., Shen, Y., Li, S., Liu, S.: Optical tweezer array system based on 2D photonic crystals. Phys. Proc. 22, 493–497 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Academy of Military Science and TechnologyHanoiVietnam
  2. 2.Ho Chi Minh City University of Food IndustryHo Chi Minh CityVietnam
  3. 3.Duy Tan UniversityDa NangVietnam

Personalised recommendations