Self-focusing of cosh-Gaussian laser beam and its effect on the excitation of ion-acoustic wave and stimulated Brillouin backscattering in collisionless plasma
- 22 Downloads
Abstract
An analytical and numerical study has been carried out for self-focusing of an intense cosh-Gaussian laser beam in collisionless plasma and its impact on the excitation of ion-acoustic wave and stimulated Brillouin backscattering process. The analytical model has been developed under Wentzel–Kramers–Brillouin and paraxial ray approximations. The nonlinearities of ponderomotive force on electron and the relativistic oscillation of the electron mass have been used in this study. The nonlinear differential equations have been set up for the beam width parameters of the main beam, ion-acoustic wave, backscattered wave and back reflectivity of stimulated Brillouin scattering (SBS). These equations have been solved numerically for different values of decentred parameter (b), relative plasma density (ωp0/ω0) and incident laser intensity (a). The results have been compared with only relativistic nonlinearity and Gaussian profile of laser beam. The focusing of laser beam, ion-acoustic wave and scattered wave are found to be strong under relativistic-ponderomotive regime compared to only relativistic regime. Further, it is observed that focusing/intensity of main laser beam, ion acoustic wave and SBS back reflectivity increases with increasing the values of b and ωp0/ω0. Itis also found that back reflectivity of SBS process gets suppressed with the increase in the value of a. This study may be useful in laser induced fusion scheme where back scattering of SBS plays very important role.
Keywords
Self-focusing Relativistic-ponderomotive nonlinearity Collisionless plasma Cosh-Gaussian laser beam Ion-acoustic wave Stimulated Brillouin scatteringNotes
Acknowledgements
The authors are thankful to the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India for providing financial assistance for carrying out this research work vide project file No. EMR/2016/000112.
References
- Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10(5), 609–636 (1968)ADSGoogle Scholar
- Albright, B.J., Yin, L., Bowers, K.J., Bergen, B.: Multi-dimensional dynamics of stimulated Brillouin scattering in a laser speckle: ion acoustic wave bowing, breakup, and laser-seeded two-ion-wave decay. Phys. Plasmas 23(3), 032703 (2016)ADSGoogle Scholar
- Aleksandrov, V.V., Brenner, M.V., Koval’skii, N.G., Loburev, S.V., Rubenchik, A.M.: Brillouin scattering in a laser plasma at moderate intensities 1012-1014 W/cm2. Sov. Phys. JETP 61(3), 459–463 (1985)Google Scholar
- Al-Rashed, A.A.R., Saleh, B.E.A.: Decentered Gaussian beams. Appl. Opt. 34(30), 6819–6825 (1995)ADSGoogle Scholar
- Amin, M.R., Capjack, C.E., Frycz, P., Rozmus, W., Tikhonchuk, V.T.: Two-dimensional studies of stimulated Brillouin scattering, filamentation, and self-focusing instabilities of laser light in plasmas. Phys. Fluids B 5(10), 3748–3764 (1993)ADSGoogle Scholar
- Baldis, H.A., Villeneuve, D.M., La Fontaine, B., Enright, G.D., Labaune, C., Baton, S., Mounaix, P., Pesme, D., Casanova, M., Rozmus, W.: Stimulated Brillouin scattering in picosecond time scales: experiments and modelling. Phys. Fluids B 5(9), 3319–3327 (1993)ADSGoogle Scholar
- Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M., Coulaud, C., Rousseaux, C., Renard, N., Mounaix, P.H., Stenz, C.: Measurement of the stimulated Brillouin scattering reflectivity from a spatially smoothed laser beam in a homogeneous large-scale plasma. Phys. Rev. E 57(5), R4895 (1998)ADSGoogle Scholar
- Borisov, A.M., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M.: Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45(8), 5830 (1992)ADSGoogle Scholar
- Brandi, H.S., Manus, C., Mainfray, G.: Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47(5), 3780 (1993a)ADSGoogle Scholar
- Brandi, H.S., Manus, C., Mainfray, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5(10), 3539–3550 (1993b)ADSGoogle Scholar
- Casperson, L.W., Hall, D.G., Tovar, A.A.: Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14(12), 3341–3348 (1997)ADSMathSciNetGoogle Scholar
- Chirokikh, A., Seka, W., Simon, A., Craxton, R.S., Tikhonchuk, V.T.: Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5(4), 1104–1109 (1998)ADSGoogle Scholar
- Eliseev, V.V., Rozmus, W., Tikhonchuk, V.T., Capjack, C.E.: Stimulated Brillouin scattering and ponderomotive self-focusing from a single laser hot spot. Phys. Plasmas 2(5), 1712–1724 (1995)ADSGoogle Scholar
- Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A., James, G.: Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86(3), 432–435 (2001)ADSGoogle Scholar
- Gao, W., Lu, Z.W., Wang, S.Y., He, W.M., Hasi, W.L.J.: Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy. Laser Part. Beams 28(1), 179–184 (2010)ADSGoogle Scholar
- Gauniyal, R., Ahmad, N., Rawat, P., Gaur, B., Mahmoud, S.T., Purohit, G.: Stimulated Brillouin backscattering of hollow Gaussian laser beam in collisionless plasma under relativistic–ponderomotive regime. Laser Part. Beams 35(1), 81–91 (2017)ADSGoogle Scholar
- Gill, T.S., Mahajan, R., Kaur, R.: Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18(3), 033110 (2011)ADSGoogle Scholar
- Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A., Willi, O.: Stimulated Brillouin backscattering from underdense expanding plasmas in a regime of strong filamentation. Phys. Rev. E 59(1), 1038–1046 (1999)ADSGoogle Scholar
- Gupta, N., Singh, A.: Dynamics of quadruple laser beams in collisionless plasmas. Waves Random Complex Media 28, 1–18 (2017)Google Scholar
- Habibi, M., Ghamari, F.: Significant enhancement in self-focusing of high-power laser beam through dense plasmas by ramp density profile. J. Opt. Soc. Am. B 32(7), 1429–1434 (2015)ADSGoogle Scholar
- Huller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C., Bandulet, H.: Modeling of stimulated Brillouin scattering in expanding plasmas. J. Phys. Conf. Ser. 112(2), 022031 (2008)Google Scholar
- Kaw, P.K., Schmidt, G., Wilcox, T.: Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16(9), 1522–1525 (1973)ADSGoogle Scholar
- Konar, S., Mishra, M., Jana, S.: Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362(5–6), 505–510 (2007)ADSGoogle Scholar
- Krall, N.A., Trivelpicec, A.W.: Principle of Plasma Physics. McGraw Hill-Kogakusha, Tokyo (1973)Google Scholar
- Kruer, W.L.: The Physics of Laser Plasma Interactions. Addison-Wesley, Redwood City (1988)Google Scholar
- Labaune, C., Fabre, E., Michard, A., Briand, F.: Evidence of stimulated Brillouin backscattering from a plasma at short laser wavelengths. Phys. Rev. A 32(1), 577 (1985)ADSGoogle Scholar
- Labaune, C., Rozmus, W., Baldis, H.A., Mounaix, P., Pesme, D., Baton, S.D., Fontaine, B.L., Villeneuve, D.M., Enright, G.D.: Proceedings of SPIE 1413, Short-Pulse High-Intensity Lasers and Applications (1991)Google Scholar
- Labaune, C., Baldis, H.A., Schifano, E., Bauer, B.S., Michard, A., Renard, N., Seka, W., Moody, J.D., Estabrook, K.G.: Location of ion-acoustic waves from back and side stimulated Brillouin scattering. Phys. Rev. Lett. 76(20), 3727 (1996)ADSGoogle Scholar
- Labaune, C., Baldis, H.A., Renard, N., Schifano, E., Michard, A.: Interplay between ion acoustic waves and electron plasma waves associated with stimulated Brillouin and Raman scattering. Phys. Plasmas 4(2), 423–427 (1997)ADSGoogle Scholar
- Lu, B., Luo, S.: Beam propagation factor of hard-edge diffracted cosh-Gaussian beams. Opt. Commun. 178(4–6), 275–281 (2000)ADSGoogle Scholar
- Lu, B., Ma, H., Zhang, B.: Propagation properties of cosh-Gaussian beams. Opt. Commun. 164(4–6), 165–170 (1999)ADSGoogle Scholar
- Mahmoud, S.T., Sharma, R.P., Kumar, A., Yadav, S.: Effect of pump depletion and self-focusing on stimulated Brillouin scattering process in laser-plasma interactions. Phys. Plasmas 6(3), 927–931 (1999)ADSGoogle Scholar
- Masson-Laborde, P.E., Hüller, S., Pesme, D., Labaune, Ch., Depierreux, S., Loiseau, P., Bandulet, H.: Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma. Phys. Plasmas 21(3), 032703 (2014)ADSGoogle Scholar
- Mounaix, P., Divol, L., Huller, S., Tikhonchuk, V.T.: Effects of spatial and temporal smoothing on stimulated Brillouin scattering in the independent-hot-spot model limit. Phys. Rev. Lett. 85(21), 4526–4529 (2000)ADSGoogle Scholar
- Myatt, J., Pesme, D., Huller, S., Maximov, A.V., Rozmus, W., Capjack, C.E.: Nonlinear propagation of a randomized laser beam through an expanding plasma. Phys. Rev. Lett. 87(25), 255003 (2001)Google Scholar
- Nanda, V., Kant, N.: Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21(7), 072111 (2014)ADSGoogle Scholar
- Neumayer, P., Berger, R.L., Divol, L., Froula, D.H., London, R.A., MacGowan, B.J., Meezan, N.B., Ross, J.S., Sorce, C., Suter, L.J., Glenzer, S.H.: Suppression of stimulated Brillouin scattering by increased Landau damping in multiple-ion-species hohlraum plasmas. Phys. Rev. Lett. 100(10), 105001 (2008)Google Scholar
- Niknam, A.R., Barzegar, S., Hashemzadeh, M.: Self-focusing and stimulated Brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma. Phys. Plasmas 20, 122117 (2013)ADSGoogle Scholar
- Purohit, G., Rawat, P.: Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma. Laser Part. Beams 33(3), 499–509 (2015)ADSGoogle Scholar
- Rozmus, W., Sharma, R.P., Samson, J.C., Tighe, W.: Nonlinear evolution of stimulated Raman scattering in homogeneous plasmas. Phys. Fluids 30(7), 2181–2193 (1987)ADSGoogle Scholar
- Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K.: Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27(4), 619–627 (2009)ADSGoogle Scholar
- Singh, A., Walia, K.: Self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Brillouin scattering process. Opt. Commun. 290, 175–182 (2013)ADSGoogle Scholar
- Sodha, M.S., Ghatak, A.K., Tripathi, V.K.: Self-focusing of Laser Beams. Tata-McGraw-Hill, New Delhi (1974)Google Scholar
- Thakur, V., Kant, N.: Stronger self-focusing of cosh-Gaussian laser beam under exponential density ramp in plasma with linear absorption. Optik 183, 912–917 (2019)ADSGoogle Scholar
- Varaki, M.A., Jafari, S.: Relativistic self-focusing of an intense laser pulse with hot magnetized plasma in the presence of a helical magnetostatic wiggler. Phys. Plasmas 24, 082309 (2017)Google Scholar
- Wang, Y.L., Lu, Z.W., He, W.M., Zheng, Z.X., Zhao, Y.H.: A new measurement of stimulated Brillouin scattering phase conjugation fidelity for high pump energies. Laser Part. Beams 27(2), 297–302 (2009)ADSGoogle Scholar
- Wei, M.S., Beg, F.N., Clark, E.L., Dangor, A.E., Evans, R.G., Gopal, A., Ledingham, K.W.D., McKenna, P., Norreys, P.A., Tatarakis, M., Zepf, M., Krushelnick, K.: Observations of the filamentation of high-intensity laser-produced electron beams. Phys. Rev. E 70(5), 056412 (2004)Google Scholar
- Yahia, V., Masson-Laborde, P.E., Depierreux, S., Goyon, C., Loisel, G., Baccou, C., Borisenko, N.G., Orekhov, A., Rienecker, T., Rosmej, O., Teychenné, D., Labaune, C.: Reduction of stimulated Brillouin backscattering with plasma beam smoothing. Phys. Plasmas 22(4), 042707 (2015)ADSGoogle Scholar
- Zhou, G.: Propagation of a higher-order cosh-Gaussian beam in turbulent atmosphere. Opt. Express 19(5), 3945–3951 (2011)ADSGoogle Scholar