Optimization of the frequency response of a novel GaAs plasmonic terahertz detector

  • A. V. ShchepetilnikovEmail author
  • B. D. Kaysin
  • P. A. Gusikhin
  • V. M. Muravev
  • G. E. Tsydynzhapov
  • Yu. A. Nefyodov
  • A. A. Dremin
  • I. V. Kukushkin


Previously there was reported a new type of high-speed plasmonic THz detector that can operate at room temperature. As an extension of that work, the sensitivity of the detector was investigated over a wide range of sub-THz frequencies. The measured frequency response is not purely monotonic but exhibits oscillatory behaviour with a number of maxima and minima. Our study reveals that such frequency dependence is caused by the interference of electromagnetic waves inside the detector substrate, as the frequencies of these extrema are found to be governed by the substrate thickness. We demonstrate that sensitivity of this type of detector can be optimized for the desired operating frequency within 0.06–0.7 THz spectrum by adjusting the substrate thickness. We also show that a monotonic frequency response with eliminated minima can be achieved by mounting the detector on a specially designed silicon lens.


Terahertz Detection Frequency response 



The work was supported by the Russian Science Foundation Grant No. 19-72-30003

The authors would like to recognize Dr. Oleg Khrichenko, a technical writing specialist at TeraSense Group Inc., for his substantial contribution to drafting, language editing and proofreading of the manuscript.


  1. Afsar, M.N., Button, K.J.: Precise millimeter-wave measurements of complex refractive index, complex dielectric permittivity and loss tangent of GaAs, Si, SiO2, A12O3, BeO, macor, and glass. IEEE Trans. Microw. Theor. Tech. 31(2), 217–223 (1983)ADSCrossRefGoogle Scholar
  2. Andreev, I.V., Muravev, V.M., Khisameeva, A.R., Tsydynzhapov, G.E., Kukushkin, I.V.: Imaging of powerful terahertz beams. In: EPJ Web of Conferences, vol. 195, pp. 05001 (2018)CrossRefGoogle Scholar
  3. Baker, E.A.M., Walker, B.: Fabry–Perot interferometers for use at submillimetre wavelengths. J. Phys. E Sci. Instrum. 15, 25–32 (1982)ADSCrossRefGoogle Scholar
  4. Clarke, R.N., Rosenberg, C.B.: Fabry–Perot and open resonators at microwave and millimetre wave frequencies, 2–300 GHz. J. Phys. E Sci. Instrum. 15, 9–24 (1982)ADSCrossRefGoogle Scholar
  5. Dyakonov, M., Shur, M.: Plasma wave electronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices 43, 1640–1645 (1996)ADSCrossRefGoogle Scholar
  6. Fernandes, L.O.T., et al.: Photometry of THz radiation using Golay cell detector. In: 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, pp. 1–4 (2011)Google Scholar
  7. Hillger, P., Grzyb, J., Jain, R., Pfeiffer, U.R.: Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9(1), 1–19 (2019)ADSCrossRefGoogle Scholar
  8. Karasik, B.S., Sergeev, A.V., Prober, D.E.: Nanobolometers for thz photon detection. IEEE Trans. Terahertz Sci. Technol. 1, 97–111 (2011)ADSCrossRefGoogle Scholar
  9. Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)ADSCrossRefGoogle Scholar
  10. Kleine-Ostmann, T., Nagatsuma, T.J.: A review on terahertz communications research. Infrared Milli Terahz Waves 32, 143–171 (2011)CrossRefGoogle Scholar
  11. Knap, W., But, D., Dyakonova, N., Coquillat, D., et al.: Terahertz imaging with GaAs and GaN plasma field effect transistors detectors. In: 2016 MIXDES - 23rd International Conference Mixed Design of Integrated Circuits and Systems, Lodz, pp. 74–77 (2016)Google Scholar
  12. Knap, W., et al.: Terahertz waves. J. Infrared Millim. 30, 1319–1337 (2009)Google Scholar
  13. Knap, W., Kachorovskii, V., Deng, Y., Rumyantsev, S., Lu, J.-Q., Gaska, R., Shur, M.S., Simin, G., Hu, X., Asif Khan, M., Saylor, C.A., Brunel, L.C.: Nonresonant detection of terahertz radiation in field effect transistors. J. Appl. Phys. 91, 9346–9353 (2002)ADSCrossRefGoogle Scholar
  14. Knap, W., Dyakonov, M., Coquillat, D., Teppe, F., Dyakonova, N., Łusakowski, J., Karpierz, K., Sakowicz, M., Valusis, G., Seliuta, D., Kasalynas, I., El Fatimy, A., Meziani, Y.M., Otsuji, T.: Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30, 1319–1337 (2009)Google Scholar
  15. Liu, L., Rahman, S.M., Jiang, Z., Li, W., Fay, P.: Advanced terahertz sensing and imaging systems based on integrated III–V interband tunneling devices. Proc. IEEE 105(6), 1020–1034 (2017)CrossRefGoogle Scholar
  16. Marple, D.T.F.: Refractive index of GaAs. J. Appl. Phys. 35, 1241–1242 (1964)ADSCrossRefGoogle Scholar
  17. Mittleman, D.M.: Twenty years of terahertz imaging. Opt. Express 26, 9417–9431 (2018)ADSCrossRefGoogle Scholar
  18. Muravev, V.M., Gusikhin, P.A., Zarezin, A.M., Andreev, I.V., Gubarev, S.I., Kukushkin, I.V.: Novel 2D plasmon induced by metal proximity, 99, 241406(R) (2019)Google Scholar
  19. Muravev, V.M., Kukushkin, I.V.: Plasmonic detector/spectrometer of subterahertz radiation based on two-dimensional electron system with embedded defect. Appl. Phys. Lett. 100, 082102–082104 (2012)ADSCrossRefGoogle Scholar
  20. Muravev, V.M., Solov’ev, V.V., Fortunatov, A.A., Tsydynzhapov, G.E., Kukushkin, I.V.: On the response time of plasmonic terahertz detectors. J. Exp. Theor. Phys. Lett. 103(12), 792–794 (2012)CrossRefGoogle Scholar
  21. Muravev, V.M., Gusikhin, P.A., Andreev, I.V., Kukushkin, I.V.: Novel relativistic plasma excitations in a gated two-dimensional electron system. Phys. Rev. Lett. 114, 106805–106809 (2015)ADSCrossRefGoogle Scholar
  22. Ojefors, E., Baktash, N., Zhao, Y., Hadi, R.A., Sherry, H., Pfeiffer, U.R.: Terahertz imaging detectors in a 65-nm CMOS SOI technology. In: 2010 Proceedings of ESSCIRC, Seville, pp. 486–489 (2010)Google Scholar
  23. O’Reilly, E.P., Onischenko, A.I., Avrutin, E.A., Bhattacharyya, D., Marsh, J.H.: Longitudinal mode grouping in InGaAs/GaAs/AlGaAs quantum dot lasers: origin and means of control. Electron. Lett. 34(21), 2035–2037 (1998)CrossRefGoogle Scholar
  24. Ruan, S., Yang, J., Zhang, M.: Real-time terahertz imaging using a 1.63 THz optically-pumped terahertz laser and a pyroelectric camera. In: Proceedings of the SPIE, 28th International Congress on High-Speed Imaging Photonics, 7126, 1261U–1–6 (2009)Google Scholar
  25. Shaikhaidarov, R., Antonov, V.N., Casey, A., Kalaboukhov, A., Kubatkin, S., Harada, Y., Onomitsu, K., Tzalenchuk, A., Sobolev, A.: Detection of coherent terahertz radiation from a high-temperature superconductor Josephson junction by a semiconductor quantum-dot detector. Phys. Rev. Appl. 5, 024010–024015 (2016)ADSCrossRefGoogle Scholar
  26. Shanera, E.A., Lee, M., Wanke, M.C., Grine, A.D., Reno, J.L., Allen, S.J.: Single-quantum-well grating-gated terahertz plasmon detectors. Appl. Phys. Lett. 87, 193507–193509 (2005)ADSCrossRefGoogle Scholar
  27. Sheen, D.M., McMakin, D.L., Hall, T.E.: Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001)ADSCrossRefGoogle Scholar
  28. Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R., Kemp, M.C.: Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116–241118 (2005)ADSCrossRefGoogle Scholar
  29. Shur, M.S., Ryzhii, V.: Plasma wave electronics. Int. J. High Speed Electron. Syst. 13, 575–600 (2003)CrossRefGoogle Scholar
  30. Tsydynzhapov, G.E., Gusikhin, P.A., Muravev, V.M., Andreev, I.V., Kukushkin, I.V.: New terahertz security body scanner. In: 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, pp. 1–1 (2018)Google Scholar
  31. Whatmore, W.R.: Pyroelectric devices and materials. Rep. Prog. Phys. 49, 1335–1386 (1986)ADSCrossRefGoogle Scholar
  32. Zhang, X.-C., Xu, J.: Introduction to THz Wave Photonics. Springer, Berlin (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsRASChernogolovkaRussia
  2. 2.TeraSense Group, Inc.San JoseUSA

Personalised recommendations