Modulational instability and soliton trains in a model for two-mode fiber ring lasers

  • E. Ntongwe Mesumbe
  • Alain M. DikandéEmail author


A model of orthogonally polarized two-field fiber ring laser with a linear gain is considered, with emphasis on the continuous-wave stability and the existence of soliton trains. The continuous-wave stability analysis is carried out within the framework of the modulational-instability approach, the variations of the gain spectrum with the modulation frequency and characteristic parameters of the model give rise to a rich variety of stability features including single-band and multiband stability regions. Seeking for pulse structures of the model, the two coupled cubic complex Ginzburg–Landau equations describing individual mode propagations are transformed into a set of coupled, first-order nonlinear ordinary-differential equations for the amplitudes and phases of the two modes. Numerical simulations of the last set of coupled equations indicate that in the anomalous dispersion regime, envelopes of the two fields are periodic trains of pulses the amplitudes of which are affected by the linear gain.


Fiber ring laser Orthogonally polarized two-mode fields Modulational instability Pulse trains 



Part of the work of A. M. Dikandé (numerical simulations) was done during a visit at the ICTP Trieste, Italy. The authors thank the anonymous referees for their pertinent suggestions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59, 880–882 (1987)ADSCrossRefGoogle Scholar
  2. Akhmediev, N.N., Ankiewicz, A., Soto-Crespo, J.M.: Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997)ADSMathSciNetCrossRefGoogle Scholar
  3. Akhmediev, N.N., Lederer, M.J., Luther-Davies, B.: Exact localized solution for nonconservative systems with delayed nonlinear response. Phys. Rev. E 57, 3664–3667 (1998)ADSCrossRefGoogle Scholar
  4. Akhmediev, N.N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 53, 0566021–05660213 (2001)Google Scholar
  5. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. Chen, C.J., Wai, P.K.A., Menyuk, C.R.: Self-starting of passively mode-locked lasers with fast saturable absorbers. Opt. Lett. 20, 350–352 (1995)ADSCrossRefGoogle Scholar
  7. Dai, X., Xiang, Y., Wen, S., Fan, D.: Modulation instability of copropagating light beams in nonlinear metamaterials. J. Opt. Soc. Am. B 26, 564–571 (2009)ADSCrossRefGoogle Scholar
  8. Dikandé, A.M., Voma Titafan, J., Essimbi, B.Z.: Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity. J. Opt. 19, 105504–105509 (2017)ADSCrossRefGoogle Scholar
  9. Dikandé Bitha, R.D., Dikandé, A.M.: Elliptic-type soliton combs in optical ring microresonators. Phys. Rev. A 97, 0338131–03381312 (2018)CrossRefGoogle Scholar
  10. Fandio Jubgang Jr., D., Dikandé, A.M.: Pulse train uniformity and nonlinear dynamics of soliton crystals in mode-locked fiber ring lasers. J. Opt. Soc. Am. B 34, 66–75 (2017)ADSCrossRefGoogle Scholar
  11. Fandio Jubgang Jr., D., Dikandé, A.M., Sunda-Meya, A.: Elliptic solitons in optical fiber media. Phys. Rev. A 92, 0538501–0538507 (2015)CrossRefGoogle Scholar
  12. Haus, H.A.: Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049–3058 (1975)ADSCrossRefGoogle Scholar
  13. Haus, H.A., Silberberg, Y.: Laser mode locking with addition of nonlinear index. IEEE J. Quantum Electron. 22, 325–331 (1986)ADSCrossRefGoogle Scholar
  14. Haus, H.A., Ippen, E.P.: Self-starting of passively mode-locked lasers. Opt. Lett. 16, 1331–1333 (1991)ADSCrossRefGoogle Scholar
  15. Hermann, J.: Starting dynamic, self-starting condition and mode-locking threshold in passive, coupled-cavity or Kerr-lens mode-locked solid-state lasers. Opt. Commun. 98, 111–116 (1993)ADSCrossRefGoogle Scholar
  16. Hickmann, J.M., Cavalcanti, S.B., Borges, N.M., Gouveia, E.A., Gouveia-Neto, A.S.: Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity. Opt. Lett. 18, 182–184 (1993)ADSCrossRefGoogle Scholar
  17. Ippen, E.P., Haus, H.A., Liu, L.Y.: Additive pulse mode locking. J. Opt. Soc. Am. B 6, 1736–1745 (1989)ADSCrossRefGoogle Scholar
  18. Issokolo, R.N., Dikandé, A.M.: Nonlinear periodic wavetrains in thin liquid films falling on a uniformly heated horizontal plate. Phys. Fluids 30, 0541021–0541028 (2018)CrossRefGoogle Scholar
  19. Kalashnikov, V.L., Sorokin, E., Sorokina, I.T.: Multipulse operation and limits of the Kerr-lens mode-locking stability. IEEE J. Quantum Electron. 39, 323–336 (2003)ADSCrossRefGoogle Scholar
  20. Kivshar, Y.S., Turitsyn, S.K.: Vector dark solitons. Opt. Lett. 18, 337–339 (1993)ADSCrossRefGoogle Scholar
  21. Krausz, F., Brabec, T., Spielmann, C.: Self-starting passive mode locking. Opt. Lett. 16, 235–237 (1991)ADSCrossRefGoogle Scholar
  22. Li, J.H., Chiang, K.S., Chow, K.W.: Modulation instabilities in two-core optical fibers. J. Opt. Soc. Am. B 28, 1693–1701 (2011)ADSCrossRefGoogle Scholar
  23. Luther, H.: An explicit sixth-order Runge–Kutta formula. Math. Comp. 22, 434–436 (1968)CrossRefGoogle Scholar
  24. Martijn de Sterke, C.: Theory of modulational instability in fiber Bragg gratings. J. Opt. Soc. Am. B 15, 2660–2667 (1998)ADSCrossRefGoogle Scholar
  25. Martinez, O.E., Fork, R.L., Gordon, J.P.: Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. Opt. Lett. 9, 156–158 (1984)ADSCrossRefGoogle Scholar
  26. Pschotta, R., Keller, U.: Passive mode locking with slow saturable absorbers. Appl. Phys. B. 73, 653–662 (2001)ADSCrossRefGoogle Scholar
  27. Soto-Crespo, J.M., Akhmediev, N.N., Town, G.: Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber. J. Opt. Soc. Am. B 19, 234–242 (2002)ADSCrossRefGoogle Scholar
  28. Tanemura, T., Kikuchi, K.: Unified analysis of modulational instability induced by cross-phase modulation in optical fibers. J. Opt. Soc. B 20, 2502–2514 (2003)ADSCrossRefGoogle Scholar
  29. Tang, D.Y., Zhang, H., Zhao, L.M., Wu, X.: Observation of high-order polarization-locked vector solitons in a fiber laser. Phys. Rev. Lett. 101, 1539041–1539043 (2008)Google Scholar
  30. Tasgal, R.S., Malomed, B.A.: Modulational instabilities in the dual-core nonlinear optical fiber. Phys. Scr. 60, 418–422 (1999)ADSCrossRefGoogle Scholar
  31. Trillo, S., Wabnitz, S., Stegeman, G.I., Wright, E.M.: Parametric amplification and modulational instabilities in dispersive nonlinear directional couplers with relaxing nonlinearity. J. Opt. Soc. Am. B 6, 889–900 (1989)ADSCrossRefGoogle Scholar
  32. Weill, R., Vodonos, R.B., Gordon, A., Gat, O., Fischer, B.: Statistical light-mode dynamics of multipulse passive mode locking. Phys. Rev. E 76, 0311121–03111210 (2007)Google Scholar
  33. Yue, B.H., Yang, L.Z., Wang, J.F., Yang, L.: Evolution of dark-dark soliton pairs in a dispersion managed erbium-doped fiber ring laser. Laser Phys. 23, 075106–075110 (2013)ADSCrossRefGoogle Scholar
  34. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Phys. D 238, 540–548 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Research on Advanced Materials and Nonlinear Science (LaRAMaNS), Department of Physics, Faculty of ScienceUniversity of BueaBueaCameroon

Personalised recommendations