Advertisement

Propagation properties of finite cosh-Airy beams through an Airy Transform Optical System

  • M. Yaalou
  • Z. Hricha
  • A. BelafhalEmail author
Article
  • 56 Downloads

Abstract

In this paper, we have derived the analytical expression for a diffracted finite cosh-Airy beam by an Airy Transform Optical System (ATOS). The obtained output field is expressed as a superposition of finite Airy modes with different weights and decay factors. Numerical examples were performed to illustrate the influence of the scale factor, the parameter associated with cosh-function, in addition to the parameters of the finite Airy mode and the parameters of the ATOS on the generated beam. It is shown that the resulting beam possesses more manipulation degrees of freedom than that corresponding to finite Airy or Gaussian-Airy beams. This investigation is also extended to the cos-Airy beams. The obtained results are consistent with those previously obtained for fundamental Gaussian and Airy beams, and the present study provides a more generalized investigation on the conversion of related Airy beams by an ATOS.

Keywords

Airy beams cosh-Airy beams cos-Airy beams Airy Transform Optical System 

Notes

References

  1. Baumgartl, J., Mazilu, M., Dholakia, K.: Optically mediated particle clearing using Airy wavepackets. Nat. Photonics 2(11), 675–678 (2008)ADSCrossRefGoogle Scholar
  2. Berry, M.V., Balazs, N.L.: Nonspreading wave packets. Am. J. Phys. 47(3), 264–267 (1979)ADSCrossRefGoogle Scholar
  3. Broky, J., Siviloglou, G.A., Dogariu, A., Christodoulides, D.N.: Self-healing properties of optical Airy beams. Opt. Expr. 16, 12880–12891 (2008)ADSCrossRefGoogle Scholar
  4. Collins, S.A.: Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am. 60, 1168–1177 (1970)ADSCrossRefGoogle Scholar
  5. Davis, J.A., McNamara, D.E., Cottrel, D.M.: Analysis of fractional Hilbert transform. Appl. Opt. 37, 6911–6913 (1998)ADSCrossRefGoogle Scholar
  6. Davis, J.A., McNamara, D.E., Cottrel, D.M., Campos, J.: Image processing with radial Hilbert transform, theory and experiments. Opt. Lett. 25, 99–101 (2000)ADSCrossRefGoogle Scholar
  7. El Halba, E.M., Khouilid, M., Boustimi, M., Belafhal, A.: Generation of generalized spiraling Bessel beams by a curved fork-shaped hologram with Bessel–Gaussian laser beams modulated by a Bessel grating. Optik 154, 331–343 (2018)ADSCrossRefGoogle Scholar
  8. Ellenbogen, T., Voloch-Bloch, N., Ganany-Padowicz, A., Arie, A.: Nonlinear generation and manipulation of Airy beams. Nat. Photonics 3(7), 395–398 (2009)ADSCrossRefGoogle Scholar
  9. Ez-zariy, L., Hricha, Z., Belafhal, A.: Novel finite Airy array beams generated from Gaussian array beams illuminating an optical Airy transform system. Prog. Electromagn. Res. M 49, 41–50 (2016)CrossRefGoogle Scholar
  10. Ez-zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Converstion of the hyperbolic-cosine Gaussian beam to a novel finite Airy-related beam using an optical Airy transform system. Optik 171, 501–506 (2018)ADSCrossRefGoogle Scholar
  11. Goodman, J.W.: Introduction to Fourier Optics. Roberts & Co., Greenwood Village (2005)Google Scholar
  12. Jia, S., Lee, J., Fleischer, J.W., Siviloglou, G.A., Christodoulides, D.N.: Diffusion-trapped Airy beams in photorefractive media. Phys. Rev. Lett. 104(25), 253904–253907 (2010)ADSCrossRefGoogle Scholar
  13. Jiang, Y., Huang, K., Lu, X.: The optical Airy transform and its application in generating and controlling the Airy beam. Opt. Commun. 285, 4840–4843 (2012a)ADSCrossRefGoogle Scholar
  14. Jiang, Y., Huang, K., Lu, X.: Airy related beam generated from flat-topped Gaussian beams. J. Opt. Soc. Am. A 29(7), 1412–1416 (2012b)ADSCrossRefGoogle Scholar
  15. Li, H.H., Wang, J.G., Tang, M.M., Li, X.Z.: Propagation properties of cosh-Airy beams. J. Mod. Opt. 65(3), 314–320 (2018a)ADSMathSciNetCrossRefGoogle Scholar
  16. Li, H., Wang, J., Tang, M., Cao, J., Li, X.: Phase transition of cosh-Airy beams in inhomogeneous media. Opt. Commun. 427, 147–151 (2018b)ADSCrossRefGoogle Scholar
  17. Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Relativistic self-focusing of finite Airy Gaussian beams in collisionless plasma using the Wentzel–Krammers–Brillouin approximation. Optik 154, 58–66 (2018a)ADSCrossRefGoogle Scholar
  18. Ouahid, L., Dalil-Essakali, L., Belafhal, A.: Effect of light absorption and temperature on self-focusing of finite Airy Gaussian beams in plasma with relativistic and ponderomotive regime. Quantum Electron. 50, 216–232 (2018b)CrossRefGoogle Scholar
  19. Polynkin, P., Kolesik, M., Moloney, J.V., Siviloglou, G.A., Christodoulides, D.N.: Curved plasma channel generation using ultra intense Airy beams. Science 324, 229–232 (2009)ADSCrossRefGoogle Scholar
  20. Rose, P., Diebel, F., Boguslawski, M., Denz, C.: Airy beam induced optical routing. Appl. Phys. Lett. 102, 101101–101103 (2013)ADSCrossRefGoogle Scholar
  21. Siviloglou, G.A., Christodoulides, D.N.: Accelerating finite Airy beams. Opt. Lett. 32, 979–981 (2007)ADSCrossRefGoogle Scholar
  22. Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Observation of accelerating Airy beams. Phys. Rev. Lett. 99, 213901–213904 (2007)ADSCrossRefGoogle Scholar
  23. Vallée, O., Soares, M.: Airy Functions and Their Applications to Physics. Imperial College Press, London (2004)CrossRefzbMATHGoogle Scholar
  24. Widder, D.V.: The Airy transform. Am. Math. Mon. 86, 271–277 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Transformation of double-half inverse Gaussian hollow beams into superposition of finite Airy beams using an optical Airy transform. Opt. Quantum Electron. 51, 64–75 (2019a)CrossRefGoogle Scholar
  26. Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Generation of spiraling Bessel beams from Dark/Antidark Gaussian beams diffracted by a curved fork-shaped hologram. Opt. Quantum Electron. 51, 242–254 (2019b)CrossRefGoogle Scholar
  27. Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of Dark and Antidark Gaussian beams in a turbulent atmosphere. Opt. Quantum Electron. 51, 255–266 (2019c)CrossRefGoogle Scholar
  28. Zhou, G., Chu, X., Chen, R., Zhou, Y.: Self-healing properties of cosh-Airy beams. Laser Phys. 29, 025001 (2019a)ADSCrossRefGoogle Scholar
  29. Zhou, G., Chen, R., Chu, X.: Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis. Opt. Laser Technol. 116, 72–82 (2019b)ADSCrossRefGoogle Scholar
  30. Zhou, Y., Xu, Y., Zhou, G.: Beam propagation factor of cosh-Airy beams. Appl. Sci. 9(9), 1817–1826 (2019c)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory LPNAMME, Laser Physics Group, Department of Physics, Faculty of SciencesChouaïb Doukkali UniversityEl JadidaMorocco

Personalised recommendations