Miniband formation engineering in GaN/AlN superlattices with constant total effective length

  • M. Solaimani
  • M. IzadifardEmail author


In this work, we study the miniband formation procedure in GaN/AlN constant total effective length superlattices by means of the subband energy calculations. We calculate the transmission coefficients and miniband structures of the systems by means of the transfer matrix and finite difference methods, respectively. The miniband structures obtained by using these methods confirm each other. Here, we observe a nonlinear miniband gap behavior as the number of wells changes. Now, we can tune the width of each miniband and minigap by means of the number of wells and the total effective length of the system. By using the strategy of fixing the total length of the system and optimizing the number of layers inside it, we can find the same miniband widths as the usual superlattice (fixing the well width, not the total system length). However, in the earlier case (our proposal), fabrication of the device may need fewer amounts of the material and may lead to smaller device sizes, because we fixed the total system length.


Miniband formation Superlattices Transfer matrix method Finite difference method Transmission coefficients 



Authors are grateful for the Qom University of Technology and Shahrood University of Technology supports.


  1. Aktas, O., Fan, Z.F., Botchkarev, A., Mohammad, S.N., Roth, M., Jenkins, T., Kehias, L., Morkoc, H.: Microwave performance of AlGaN/GaN inverted MOSFET’s. IEEE Electron Device Lett. 18, 293–295 (1977)ADSCrossRefGoogle Scholar
  2. Amini, M., Soleimani, M., Ehsani, M.H.: Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems. Superlattices Microstruct. 112, 680–687 (2017)ADSCrossRefGoogle Scholar
  3. Behn, U., Linder, N., Grahn, H.T., Ploog, K.: Investigation of miniband formation in a graded-gap superlattice by electroreflectance spectroscopy. Phys. Rev. B 51, 17271–17274 (1995)ADSCrossRefGoogle Scholar
  4. Cai, X.B., Xuan, X.F.: Optical harmonic generation in a Fibonacci dielectric superlattice of LiNbO3. Opt. Commun. 240, 227–233 (2004)ADSCrossRefGoogle Scholar
  5. Cheng, S.-Y., Liu, W.-C., Chang, W.-L., Pan, H.-J., Wang, W.-C., Chen, J.-Y., Feng, S.-C., Yu, K.-H.: Observation of the impulse-like negative-differential resistance of superlattice resonant-tunneling transistor. Appl. Phys. Lett. 75, 133–135 (1999)ADSCrossRefGoogle Scholar
  6. Cui, Z., Ke, X., Li, E., Liu, T.: Electronic and optical properties of titanium-doped GaN nanowires. Mater. Des. 96, 409–415 (2016)CrossRefGoogle Scholar
  7. Cui, Z., Ke, X., Li, E., Zhao, T., Qi, Q., Yan, J., Ding, Y., Liu, T.: GaN nanowire field emitters with the adsorption of Pt nanoparticles. RSC Adv. 7, 22441–22446 (2017)CrossRefGoogle Scholar
  8. Cui, Z., Ke, X., Li, E., Wang, X., Ding, Y., Liu, T., Li, M., Zhao, B.: Effect of vacancy defect on optoelectronic properties of monolayer tungsten diselenide. Opt Quant Electron 50, 1–9 (2018a)CrossRefGoogle Scholar
  9. Cui, Z., Wang, X., Ding, Y., Li, M.: Exploration work function and optical properties of monolayer SnSe allotropes. Superlattices Microstruct. 114, 251–258 (2018b)ADSCrossRefGoogle Scholar
  10. Cui, Z., Ren, K., Zhao, Y., Wang, X., Shu, H., Yu, J., Tang, W., Sun, M.: Electronic and optical properties of van der Waals heterostructures of g-GaN and transition metal dichalcogenides. Appl. Surf. Sci. 492, 513–519 (2019)CrossRefGoogle Scholar
  11. Ferry, D.K., Goodnick, S.M., Bird, J.: Transport in Nanostructures, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  12. Friel, I., Driscoll, K., Kulenica, E., Dutta, M., Paiella, R., Moustakas, T.D.: Investigation of the design parameters of AlN/GaN multiple quantum wells grown by molecular beam epitaxy for intersubband absorption. J. Crystal Growth 278, 387–392 (2005)ADSCrossRefGoogle Scholar
  13. Fuchs, F., Ahlswede, E., Weimar, U., Pletschen, W., Schmitz, J., Hartung, M., Jager, B., Szmulowicz, F.: Magneto-optics of InAs/Ga1−xInSb infrared superlattice diodes. Appl. Phys. Lett. 73, 3760–3762 (1998)ADSCrossRefGoogle Scholar
  14. Grahn, H.T., von Klitzing, K., Ploog, K., Dohler, G.H.: Electrical transport in narrow-miniband semiconductor superlattices. Phys. Rev. B 43, 12094–12097 (1991)ADSCrossRefGoogle Scholar
  15. Harrison, P.: Quantum Wells, Wires, and Dots, Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd edn. Wiley, Hoboken (2005)CrossRefGoogle Scholar
  16. Holthaus, M.: Collapse of minibands in far-infrared irradiated superlattices. Phys. Rev. Lett. 69, 351–354 (1992)ADSCrossRefGoogle Scholar
  17. Hyldgaard, P., Jauho, A.P.: Elastic and inelastic resonant tunneling in narrow-band systems: application to transport in minibands of semiconductor superlattices. J. Phys. Condens. Matter 2, 8725–8729 (1990)ADSCrossRefGoogle Scholar
  18. Iizuka, N., Kaneko, K., Suzuki, N.: Near-infrared intersubband absorption in GaN/AlN quantum wells grown by molecular beam epitaxy. Appl. Phys. Lett. 81, 1803–1805 (2002)ADSCrossRefGoogle Scholar
  19. Khon, M.A., Chen, Q., Shur, M.S., McDermott, B.T., Higgins, J.A., Burm, J., Schoff, W.J., Eastman, L.F.: CW operation of short-channel GaN/AlGaN doped channel heterostructure field-effect transistors at 10 GHz and 15 GHz. IEEE Electron Device Lett. 17, 584–585 (1996)ADSCrossRefGoogle Scholar
  20. Klos, J.W., Krawczyk, M.: Electronic miniband formation in a two-dimensional semiconductor superlattice. Mater. Sci. Pol. 26, 965–970 (2008)Google Scholar
  21. Nakamura, S., Fasol, G.: The Blue Laser Diode: GaN Based Light Emitters and Lasers. Springer, Berlin (1997)CrossRefGoogle Scholar
  22. Nam, K.B., Li, J., Kim, K.H., Lin, J.Y., Jiang, H.X.: Growth and deep ultraviolet picosecond time-resolved photoluminescence studies of AlN/GaN multiple quantum wells. Appl. Phys. Lett. 78, 3690–3692 (2001)ADSCrossRefGoogle Scholar
  23. Plis, E., Lee, S.J., Zhu, Z., Amtout, A., Krishna, S.: InAs/GaSb superlattice detectors operating at room temperature. IEEE J. Sel. Top. Quant. Electron 12, 1269–1274 (2006)ADSCrossRefGoogle Scholar
  24. Pusep, YA, Chiquito, A.J., Mergulhao, S., Galzerani, J.C.: One-dimensional character of miniband transport in doped GaAs/AlAs superlattices. Phys. Rev. B 56, 3892–3896 (1997)ADSCrossRefGoogle Scholar
  25. Saldana, X.I., Contreras-Solorio, D.A., Lopez-Cruz, E.: Self-similar optical properties in Pascal-type quasiperiodic dielectric multilayer. Rev. Mex. Fis. 53, 310–312 (2007)Google Scholar
  26. Shimada, Y., Hirakawa, K., Lee, S.-W.: Time-resolved terahertz emission spectroscopy of wide miniband GaAs/AlGaAs superlattices. Appl. Phys. Lett. 81, 1642–1644 (2002)ADSCrossRefGoogle Scholar
  27. Solaimani, M., Izadifard, M., Arabshahi, H., Sarkardehi, M.R.: Study of optical non-linear properties of a constant total effective length multiple quantum wells system. J. Lumin. 134, 699–705 (2013)CrossRefGoogle Scholar
  28. Solaimani, M., Aleomraninejad, S.M.A., Lavaei, L.: Optical rectification in quantum wells within different confinement and nonlinearity regime. Superlattices Microstruct. 111, 556–567 (2017)ADSCrossRefGoogle Scholar
  29. Tortora, S., Compagnone, F., Di Carlo, A., Lugli, P.: Theoretical study, modeling and simulation of SL quantum cascade lasers. Physica E 7, 20–24 (2000)ADSCrossRefGoogle Scholar
  30. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)ADSCrossRefGoogle Scholar
  31. Wu, Y.F., Keller, B.P., Keller, S., Kapolnek, D., Kozodoy, P., Denbaars, S.P., Mishra, U.K.: Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett. 69, 1438–1440 (1996)ADSCrossRefGoogle Scholar
  32. Zhao, X.-G.: Phonon-induced collapse of minibands in superlattices. Phys. Lett. A 230, 229–231 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesQom University of TechnologyQomIran
  2. 2.Faculty of PhysicsShahrood University of TechnologyShahroodIran

Personalised recommendations