Advertisement

Influence of argon flow rate on structural and optical properties of transparent Nb2O5 thin films

  • A. A. AttaEmail author
  • A. M. Hassanien
  • M. M. El-Nahass
  • Abdallah A. Shaltout
  • Yaser Abdullah Al-Talhi
  • Ahmed Mohammed Aljoudi
Article
  • 77 Downloads

Abstract

Transparent niobium pentoxide (Nb2O5) thin films deposited on glass substrates by RF sputtering at different argon (Ar) flow rate were contrastively studied. Analytical methods such as X-ray fluorescence, Fourier-transform infrared spectroscopy and field emission scanning electron microscope were utilized to investigate the morphological surface and structural properties of Nb2O5 thin films deposited at different Ar flow rate. UV–Vis–NIR and photoluminescence (PL) spectroscopy were used to explore the optical properties of Nb2O5 thin films deposited at different Ar flow rate. The allowed optical band gap (\( {\text{E}}_{\text{g}}^{\text{d}} \)) of the Nb2O5 thin films varies from 3.88 to 3.80 eV with increasing Ar flow rate from 30 to 90 sccm. The PL of the Nb2O5 thin films showed strong emission peak around 400 nm. The real values of the refractive index are increase with increasing Ar flow rate. Optical quantities related to the optical constants of Nb2O5 thin films thin films such as single oscillator parameters and third-order nonlinear susceptibility were assessed.

Keywords

Argon flow rate Structural properties Optical properties Nb2O5 thin films 

Notes

Acknowledgements

Prof. Dr. Ahmed Atta is thankful to the support of Deanship of Scientific Research, in Taif University for funding the Future Researcher Program in the Project No. 1-439-6089.

References

  1. Al-Baradi, A.M., El-Nahass, M.M., Hassanien, A.M., Atta, A.A., Alqahtani, M.S., Aldawsari, A.O.: Influence of RF sputtering power on structural and optical properties of Nb2O5 thin films. Optik 168, 853–863 (2018)ADSGoogle Scholar
  2. Alhuthali, A., El-Nahass, M.M., Atta, A.A., El-Raheem, M.M.A., Elsabawy, K.M., Hassanien, A.M.: Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique. J. Lumin. 158, 165–171 (2015)Google Scholar
  3. Basuvalingam, S.B., Macco, B., Knoops, H.C.M., Melskens, J., Kessels, W.M.M., Bol, A.A.: Comparison of thermal and plasma-enhanced atomic layer deposition of niobium oxide thin films. J. Vac. Sci. Technol. A 36, 041503–041511 (2018)Google Scholar
  4. Bayrak, T., Ozgit-Akgun, C., Goldenberg, E.: Structural, optical and electrical characteristics BaSrTiOx thin films: effect of deposition pressure and annealing. J. Non-Cryst. Solids 475, 76–84 (2017)ADSGoogle Scholar
  5. Burcham, L.J., Datka, J., Wachs, I.E.: In situ vibrational spectroscopy studies of supported niobium oxide catalysts. J. Phys. Chem. B 103, 6015–6024 (1999)Google Scholar
  6. Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)ADSGoogle Scholar
  7. Caglar, Y., Ilican, S., Caglar, M.: Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films. Eur. Phys. J. B 58, 251–256 (2007)ADSGoogle Scholar
  8. Cheong, J.Y., Youn, D.Y., Kim, C., Jung, J.-W., Ogata, A.F., Bae, J.G., Kim, I.-D.: Ag-coated one-dimensional orthorhombic Nb2O5 fibers as high performance electrodes for lithium storage. Electrochim. Acta 269, 388–396 (2018)Google Scholar
  9. Di Giulio, M., Micocci, G., Rella, R., Siciliano, P., Tepore, A.: Optical absorption of tellurium suboxide thin film. Phys. Status Solidi A 136, K101–K104 (1993)ADSGoogle Scholar
  10. El-Nahass, M.M.: Optical properties of tin diselenide films. J. Mater. Sci. 27, 6597–6604 (1992)ADSGoogle Scholar
  11. El-Nahass, M.M., Atta, A.A., El-Raheem, M.M.A., Hassanien, A.M.: Structural and optical properties of DC Sputtered Cd2SnO4 nanocrystalline films. J. Alloys Compd. 585, 1–6 (2014)Google Scholar
  12. Fernandes, S.L., Véron, A.C., Neto, N.F.A., Nüesch, F.A., da Silva, J.H.D., Zaghete, M.A., Graeff, C.F.D.O.: Nb2O5 hole blocking layer for hysteresis-free perovskite solar cells. Mater. Lett. 181, 103–107 (2016)Google Scholar
  13. Gimon-Kinsel, M.E., Balkus Jr., K.J.: Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous Mesoporous Mater. 28, 113–123 (1999)Google Scholar
  14. Jacob, K.T., Shekhar, C., Vinay, M.: Thermodynamic properties of niobium oxides. J. Chem. Eng. Data 55, 4854–4863 (2010)Google Scholar
  15. Jose, R., Thavasi, V., Ramakrishna, S.: Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 22, 289–301 (2009)Google Scholar
  16. Konstantinov, I., Babeva, T., Kitova, S.: Analysis of errors in thin-film optical parameters derived from spectrophotometric measurements at normal light incidence. Appl. Opt. 37, 4260–4267 (1998)ADSGoogle Scholar
  17. Kukli, K., Ritala, M., Leskela, M.: Development of dielectric properties of niobium oxide, tantalum oxide, and aluminum oxide based nanolayered materials. J. Electrochem. Soc. 148, F35–F41 (2001)Google Scholar
  18. Kumar, N., Lee, H.B., Hwang, S., Kim, T.-W., Kang, J.-W.: Fabrication of plasmonic gold-nanoparticle-transition metal oxides thin films for optoelectronic applications. J. Alloys Compd. 775, 39–50 (2019)Google Scholar
  19. Lazarova, K., Vasileva, M., Marinov, G., Babeva, T.: Optical characterization of sol–gel derived Nb2O5 thin films. Opt. Laser Technol. 58, 114–118 (2014)ADSGoogle Scholar
  20. Li, S.Z., Yang, Y.Q., Liu, L., Liu, W.C., Wang, S.B.: The preparation and refractive index of BST thin films. Phys. B 403, 2618–2623 (2008)ADSGoogle Scholar
  21. Lim, J.H., Choi, J.: Formation of niobium oxide nanowires by thermal oxidation. J. Ind. Eng. Chem. 15, 860–864 (2009)Google Scholar
  22. Liu, Y.M., Han, R.Q., Liu, F., Pei, Z.L., Sun, C.: Sputtering gas pressure and target power dependence on the microstructure and properties of DC-magnetron sputtered AlB2-type WB2 films. J. Alloys Compd. 703, 188–197 (2017)Google Scholar
  23. Lu, L., Shen, H., Zhang, H., Jiang, F., Li, B., Lin, L.: Effects of Ar flow rate and substrate temperature on the properties of AZO thin films by RF magnetron sputtering. Optoelectron. Adv. Mater. Rapid Commun. 4, 596–600 (2010)Google Scholar
  24. Masse, J.P., Szymanowski, H., Zabeida, O., Amassian, A., Klemberg-Sapieha, J.E., Martinu, L.: Stability and effect of annealing on the optical properties of plasma deposited Ta2O5 and Nb2O5 films. Thin Solid Films 515, 1674–1682 (2006)ADSGoogle Scholar
  25. Mazur, M., Szymanska, M., Kaczmarek, D., Kalisz, M., Wojcieszak, D., Domaradzki, J., Placido, F.: Determination of optical and mechanical properties of Nb2O5 thin films for solar cells applications. Appl. Surf. Sci. 301, 63–69 (2014)ADSGoogle Scholar
  26. Miller, R.C.: Optical second harmonic generation in piezoelectric crystals. Appl. Phys. Lett. 5, 17–19 (1964)ADSGoogle Scholar
  27. Morais, L.A., Adán, C., Araujo, A.S., Guedes, A.P.M.A., Marugán, J.: Synthesis, characterization, and photonic efficiency of novel photocatalytic niobium oxide materials. Glob. Challenges 1, 1700066–1700073 (2017)Google Scholar
  28. Moss, T.S.: The interpretation of the properties of indium antimonide. Proc. Phys. Soc. Lond. B 67, 775–782 (1954)ADSGoogle Scholar
  29. Mujawar, S.H., Inamdar, A.I., Patil, S.B., Patil, P.S.: Electrochromic properties of spray deposited niobium oxide thin films. Solid State Ionics 177, 3333–3338 (2006)Google Scholar
  30. Murugan, R., Vijayaprasath, G., Mahalingam, T., Hayakawa, Y., Ravi, G.: Effect of RF power on the properties of magnetron sputtered CeO2 thin films. J. Mater. Sci. Mater. Electron. 26, 2800–2809 (2015)Google Scholar
  31. Özera, N., Rubinb, M.D., Lampert, C.M.: Optical and electrochemical characteristics of niobium oxide films prepared by sol–gel process and magnetron sputtering: a comparison. Sol. Energy Mater. Sol. Cells 40, 285–296 (1996)Google Scholar
  32. Palik, D.E.: Handbook of Optical Constants of Solids, p. 265. Academic Press, New York (1985)Google Scholar
  33. Pawlicka, A., Atik, M., Aegerter, M.A.: Synthesis of Nb2O5 films for electro-chromic devices. J. Mater. Sci. Lett. 14, 1568–1570 (1995)Google Scholar
  34. Pereira, C.C.M., Lachter, E.R.: Alkylation of toluene and anisole with 1-octen-3-ol over niobium catalysts. Appl. Catal. A 266, 67–72 (2004)Google Scholar
  35. Pillis, M., Geribola, G., Scheidt, G., de Araújo, E., de Oliveira, M., Antunes, R.: Corrosion of thin, magnetron sputtered Nb2O5 films. Corros. Sci. 102, 317–325 (2016)Google Scholar
  36. Ramírez, G., Rodil, S.E., Muhl, S., Turcio-Ortega, D., Olaya, J.J., Rivera, M., Camps, E., Escobar-Alarcón, L.: Amorphous niobium oxide thin films. J. Non-Cryst. Solids 356, 2714–2721 (2010)ADSGoogle Scholar
  37. Rawal, S.K., Chawla, A.K., Jayaganthan, R., Chandra, R.: The influence of various sputtering parameters on structural, wettability and optical properties of Zr2ON2 thin films. Mater. Sci. Eng. B 45, 16–23 (2014)Google Scholar
  38. Sarkar, J.: Sputtering Materials for VLSI and Thin Film Devices, pp. 1–92. William Andrew (Elsevier), Oxford (2014)Google Scholar
  39. Shaltout, A.A., Welz, B., Ibrahim, M.A.: Influence of the grain size on the quality of standardless WDXRF analysis of river Nile sediments. Microchem. J. 99(2), 356–363 (2011)Google Scholar
  40. Shaltout, A.A., Gomma, M.M., Ali-Bik, M.W.: Utilization of standardless analysis algorithms using WDXRF and XRD for Egyptian iron ore identification. X-Ray Spectrom. 41(6), 355–362 (2012a)ADSGoogle Scholar
  41. Shaltout, A.A., Moharram, M.A., Mostafa, N.Y.: Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples. Spectrochim. Acta Part B: At. Spectrosc. 67, 74–78 (2012b)ADSGoogle Scholar
  42. Sheikin, E.G.: The pressure dependence of the deposition rate in a magnetron sputtering system. Thin Solid Films 574, 52–59 (2015)ADSGoogle Scholar
  43. Silvaa, G., Nogueira, A.E., Oliveira, J.A., Torres, J.A., Lopes, O.F., Ribeiro, C.: Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl. Catal. B: Environ. 242, 349–357 (2019)Google Scholar
  44. Solomon, I., Schmidt, M.P., Sénémaud, C., Khodja, M.D.: Band structure of carbonated amorphous silicon studied by optical, photoelectron, and X-ray spectroscopy. Phys. Rev. B 38, 13263–13270 (1988)ADSGoogle Scholar
  45. Song, D.: Effects of RF power on surface-morphological, structural and electrical properties of aluminium-doped zinc oxide films by magnetron sputtering. Appl. Surf. Sci. 254, 4171–4178 (2008)ADSGoogle Scholar
  46. Stormer, H., Weber, A., Fischer, V., Ivers-Tiffee, E., Gerthsen, D.: Anodically formed oxide films on niobium: microstructural and electrical properties. J. Eur. Ceram. Soc. 29, 1743–1753 (2009)Google Scholar
  47. Sun, F., Qiao, X., Tan, F., Wang, W., Qiu, X.: One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J. Mater. Sci. 47, 7262–7268 (2012)ADSGoogle Scholar
  48. Tichý, L., Tichá, H., Nagels, P., Callaerts, R., Mertens, R., Vlček, M.: Optical properties of amorphous As–Se and Ge–As–Se thin films. Mater. Lett. 39, 122–128 (1999)Google Scholar
  49. Usha, N., Sivakumar, R., Sanjeeviraja, C., Arivanandhan, M.: Niobium pentoxide (Nb2O5) thin films: RF power and substrate temperature induced changes in physical properties. Optik 126, 1945–1950 (2015)ADSGoogle Scholar
  50. Wang, C.C.: Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045–2048 (1970)ADSGoogle Scholar
  51. Wang, Y.D., Yang, L.F., Zhou, Z.L., Li, Y.F., Wu, X.H.: Effects of calcining temperature on lattice constants and gas-sensing properties of Nb2O5. Mater. Lett. 49, 277–281 (2001)Google Scholar
  52. Wasa, K., Kanno, I., Kotera, H.: Handbook of Sputter Deposition Technology, pp. 1–39. William Andrew (Elsevier), Oxford (2012)Google Scholar
  53. Wemple, S.H.: Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973)ADSGoogle Scholar
  54. Wemple, S.H., DiDomenico Jr., M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1350 (1971)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Atta
    • 1
    • 3
    Email author
  • A. M. Hassanien
    • 2
  • M. M. El-Nahass
    • 3
  • Abdallah A. Shaltout
    • 1
    • 4
  • Yaser Abdullah Al-Talhi
    • 5
  • Ahmed Mohammed Aljoudi
    • 5
  1. 1.Department of Physics, Faculty of ScienceTaif UniversityTaifSaudi Arabia
  2. 2.Department of Physics, Faculty of Science and Humanity Studies at Al-QuwayiyahShaqra UniversityAl-QuwayiyahSaudi Arabia
  3. 3.Department of Physics, Faculty of EducationAin Shams UniversityCairoEgypt
  4. 4.Spectroscopy Department, Physics DivisionNational Research CentreCairoEgypt
  5. 5.General Department of Education in TaifTaifSaudi Arabia

Personalised recommendations