Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3/PVDF 0–3 composite reinforced with two kinds of ZnO powder

  • Kun Yu
  • Shan HuEmail author
  • Wendi Yu
  • Junqin Tan


0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3 (KNNLS–CA) ceramic powder obtained through the conventional solid state reaction. The ZnO nanoparticles (denoted as ZnO1) and poly (vinylidene fluoride) (PVDF) were supplied from commercial companies. The self-synthesized ZnO powder (denoted as ZnO2) were prepared by hydrothermal method using Zn (CH3COO)2·2H2O and NaOH. Subsequently, the two kinds of composites were fabricated by hot-pressing process using KNNLS–CA ceramic powder, two kinds of ZnO powder and PVDF polymer. The effects of the ZnO on the crystalline structures, morphology, thermal stability, densities and electric properties of composites were studied systemically. The KNNLS–CA ceramic possesses a perovskite phase with orthorhombic symmetry and peaks from the second phase of K3Li2Nb5O15 (PDF#52-0157) are detected by X-ray diffraction. PVDF polymer mainly possesses α, β and γ phases. Two kinds of ZnO all possess hexagonal wurtzite structures without any impurity phase. It is worth noting that the ZnO particles have great impacts on lattice constants, strain and crystallinity. In addition, the ZnO particles can enhance the relative fraction of β phase in PVDF and improve the thermal stability of the composite. Interestingly, the dielectric and piezoelectric properties are also found to be improved with the increase of ZnO content. Especially, when 10 wt.% ZnO2 is doped, the dielectric permittivity reaches the value of 586.4 (100 Hz) at room temperature and the piezoelectric constant is 64 pC/N. After 30 days of aging test, it is obvious that all the composites present a good stability of piezoelectric property.


KNNLS–CA PVDF Nano-ZnO Thermal properties Dielectric properties Piezoelectric properties 



This work was supported by Science and Technology development Fund of China University of Geosciences (Grant No. 110-KH14J130).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Supplementary material

11082_2019_2051_MOESM1_ESM.tif (12.3 mb)
Supplementary material 1 (TIFF 12566 kb)
11082_2019_2051_MOESM2_ESM.pdf (2.1 mb)
Supplementary material 2 (PDF 2183 kb)


  1. Abdullah, I.Y., Yahaya, M., Jumali, M.H.H., Shanshool, H.M.: Enhancement piezoelectricity in poly(vinylidene fluoride) by filler piezoceramics lead-free potassium sodium niobate (KNN). Opt. Quant. Electron. 48(2), 149–156 (2016)Google Scholar
  2. Ashok, A., Somaiah, T., Ravinder, D., Venkateshwarlu, C., Reddy, C.S., Rao, K.N., Prasad, M.: Electrical properties of cadmium substitution in nickel ferrites. World J. Condens. Matter Phys. 2(4), 257–266 (2012)ADSGoogle Scholar
  3. Atamanik, E., Thangadurai, V.: Dielectric properties of Ga-doped Na0.5K0.5NbO3. J. Phys. Chem. C 113(11), 4648–4653 (2009)Google Scholar
  4. Batool, A., Kanwal, F., Imran, M., Jamil, T., Siddiqi, S.A.: Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth. Met. 161(23), 2753–2758 (2012)Google Scholar
  5. Bhat, S., Shrisha, B.V., Naik, K.G.: Hydrothermal growth and characterization of ZnO nanomaterials. Environ. Sci. Eng. 48(2), 607–610 (2014)Google Scholar
  6. Bhatt, A.S., Bhat, D.K., Santosh, M.S.: Crystallinity, conductivity, and magnetic properties of PVDF-Fe3O4 composite films. J. Appl. Polym. Sci. 119(2), 968–972 (2011)Google Scholar
  7. Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788–796 (2010)Google Scholar
  8. Cao, M.S., Wang, X.X., Cao, W.Q., Fang, X.Y., Wen, B., Yuan, J.: Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018)Google Scholar
  9. Chen, C., Huang, Y., Tan, Y., Sheng, Y.: Structure and electric properties of Li-modified (K0.48Na0.52)NbO3-0.015CuO lead-free piezoceramics. J. Alloy Compd. 663, 46–51 (2016)Google Scholar
  10. Chen, Y., Xie, S.X., Wang, H.M., Chen, Q., Wang, Q.Y., Zhu, J.G., Guan, Z.W.: Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloy Compd. 696, 746–753 (2017)Google Scholar
  11. Cheong, O.J., Lee, J.S., Kim, J.H., Jang, J.: High performance flexible actuator of urchin-like ZnO nanostructure/polyvinylenefluoride hybrid thin film with graphene electrodes for acoustic generator and analyzer. Small 12(19), 2567–2574 (2016)Google Scholar
  12. Chi, Q.G., Gao, L., Wang, X., Chen, Y., Dong, J.F., Cui, Y., Lei, Q.Q.: Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers. AIP Adv. 5(11), 117103 (2015)ADSGoogle Scholar
  13. Choi, J.H., Seo, J.S., Cha, S.N., Kim, H.J., Kim, S.M., Park, Y.J., Kim, S.W., Yoo, J.B., Kim, J.M.: Effects of flow transport of the Ar carrier on the synthesis of ZnO nanowires by chemical vapor deposition. Jpn. J. Appl. Phys. 50(1), 015001 (2011)ADSGoogle Scholar
  14. Dang, Z.-M., Zhou, T., Yao, S.-H., Yuan, J.-K., Zha, J.-W., Song, H.-T., Li, J.-Y., Chen, Q., Yang, W.-T., Bai, J.: Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv. Mater. 21(20), 2077–2082 (2009)Google Scholar
  15. Dias, C.J., DasGupta, D.K.: Inorganic ceramic/polymer ferroelectric composite electrets. IEEE Trans. Dielectr. Electr. Insul. 3(5), 706–734 (1996)Google Scholar
  16. Du, F.F., Tong, G.X., Tong, C.L., Liu, Y., Tao, J.Q.: Selective synthesis and shape-dependent microwave electromagnetic properties of polymorphous ZnO complex architectures. J. Mater. Res. 29(5), 649–656 (2014)ADSGoogle Scholar
  17. Fang, H.J., Li, Q., Yang, Z.L., Luo, N.N., Geng, C., Zhang, Y.L., Chu, X.C., Yan, Q.F.: Effects of pre-polarization on the dielectric and piezoelectric properties of 0–3 type PIN-PMN-PT/PVDF composites. J. Mater. Sci.-Mater. Electron. 26(9), 6427–6433 (2015a)Google Scholar
  18. Fang, L.J., Wu, W., Huang, X.Y., He, J.L., Jiang, P.K.: Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos. Sci. Technol. 107, 67–74 (2015b)Google Scholar
  19. Gao, W., Zhou, B., Liu, Y.H., Ma, X.Y., Liu, Y., Wang, Z.C., Zhu, Y.C.: The influence of surface modification on the structure and properties of a zinc oxide-filled poly(ethylene terephthalate). Polym. Int. 62(3), 432–438 (2013)Google Scholar
  20. Ghosh, S.K., Alam, M.M., Mandal, D.: The in situ formation of platinum nanoparticles and their catalytic role in electroactive phase formation in poly(vinylidene fluoride): a simple preparation of multifunctional poly(vinylidene fluoride) films doped with platinum nanoparticles. RSC Adv. 4(87), 41886–41894 (2014)Google Scholar
  21. Greeshma, T., Balaji, R., Jayakumar, S.: PVDF phase formation and its influence on electrical and structural properties of PZT-PVDF composites. Ferroelectr. Lett. 40(1), 41–55 (2013)Google Scholar
  22. Gregorio, R., Nociti, N.C.P.D.: Effect of PMMA addition on the solution crystallization of the alpha-phase and beta-phase of poly(vinylidene fluoride) (PVDF). J. Phys. D Appl. Phys. 28(2), 432–436 (1995)ADSGoogle Scholar
  23. Guo, Y., Kakimoto, K., Ohsato, H.: Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85(18), 4121–4123 (2004)ADSGoogle Scholar
  24. He, Y., Hong, J.M.: Effect of nano-sized ZnO particle addition on PVDF ultrafiltration membrane performance. Adv. Mater. Process. 1(311), 1818–1821 (2011)Google Scholar
  25. Huang, Y.X., Cao, Q.X., Li, Z.M., Jiang, H.Q., Wang, Y.P., Li, G.F.: Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders. J. Am. Ceram. Soc. 92(9), 2129–2131 (2009)Google Scholar
  26. Huang, Y.Q., Du, H.W., Feng, W., Qin, H.N., Hu, Q.B.: Influence of SrZrO3 addition on structural and electrical properties of (K0.45Na0.51Li0.04)(Nb0.90Ta0.04Sb0.06)O-3 lead-free piezoelectric ceramics. J. Alloy Compd. 590, 435–439 (2014)Google Scholar
  27. Indolia, A.P., Gaur, M.S.: Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. J. Therm. Anal. Calorim. 113(2), 821–830 (2013)Google Scholar
  28. Khokhar, A., Goyal, P.K., Thakur, O.P., Sreenivas, K.: Effect of excess of bismuth doping on dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics. Ceram. Int. 41(3), 4189–4198 (2015)Google Scholar
  29. Kumari, K., Prasad, A., Prasad, K.: Structural and dielectric properties of ZnO added (Na1/2Bi1/2)TiO3 Ceramics. J. Mater. Sci. Technol. 27(3), 213–217 (2011)Google Scholar
  30. Lee, Y.C., Lee, T.K., Jan, J.H.: Piezoelectric properties and microstructures of ZnO-doped Bi0.5Na0.5TiO3 ceramics. J. Eur. Ceram. Soc. 31(16), 3145–3152 (2011)Google Scholar
  31. Li, Y., Fang, X.Y., Cao, M.S.: Thermal frequency shift and tunable microwave absorption in BiFeO3 family. Sci. Rep. 6, 24837 (2016)ADSGoogle Scholar
  32. Li, Y.J., Li, S.L., Gong, P., Li, Y.L., Fang, X.Y., Jia, Y.H., Cao, M.S.: Effect of surface dangling bonds on transport properties of phosphorous doped SiC nanowires. Phys. E 104, 247–253 (2018)Google Scholar
  33. Lonjon, A., Demont, P., Dantras, E., Lacabanne, C.: Mechanical improvement of P(VDF–TrFE)/nickel nanowires conductive nanocomposites: influence of particles aspect ratio. J. Non-Cryst. Solids 358(2), 236–240 (2012)ADSGoogle Scholar
  34. Lopes, A.C., Carabineiro, S.A., Pereira, M.F., Botelho, G., Lanceros-Mendez, S.: Nanoparticle size and concentration dependence of the electroactive phase content and electrical and optical properties of Ag/poly(vinylidene fluoride) composites. ChemPhysChem 14(9), 1926–1933 (2013)Google Scholar
  35. Luo, B.C., Wang, X.H., Wang, Y.P., Li, L.T.: Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2(2), 510–519 (2014)Google Scholar
  36. Maity, N., Mandal, A., Nandi, A.K.: Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer 103, 83–97 (2016)Google Scholar
  37. Martins, P., Caparros, C., Goncalves, R., Martins, P.M., Benelmekki, M., Botelho, G., Lanceros-Mendez, S.: Role of nanoparticle surface charge on the nucleation of the electroactive beta-poly(vinylidene fluoride) nanocomposites for sensor and actuator applications. J. Phys. Chem. C 116(29), 15790–15794 (2012)Google Scholar
  38. Paria, S., Karan, S.K., Bera, R., Das, A.K., Maitra, A., Khatua, B.B.: A facile approach to develop a highly stretchable PVC/ZnSnO3 piezoelectric nanogenerator with high output power generation for powering portable electronic devices. Ind. Eng. Chem. Res. 55(40), 10671–10680 (2016)Google Scholar
  39. Pilgrim, S.M., Newnham, R.E.: 3-0—a new composite connectivity. Mater. Res. Bull. 21(12), 1447–1454 (1986)Google Scholar
  40. Ponraj, B., Bhimireddi, R., Varma, K.B.R.: Effect of nano- and micron-sized K0.5Na0.5NbO3 fillers on the dielectric and piezoelectric properties of PVDF composites. J. Adv. Ceram. 5(4), 308–320 (2016)Google Scholar
  41. Puertolas, J.A., Garcia-Garcia, J.F., Pascual, F.J., Gonzalez-Dominguez, J.M., Martinez, M.T., Anson-Casaos, A.: Dielectric behavior and electrical conductivity of PVDF filled with functionalized single-walled carbon nanotubes. Compos. Sci. Technol. 152, 263–274 (2017)Google Scholar
  42. Singh, H.H., Singh, S., Khare, N.: Enhanced -phase in PVDF polymer nanocomposite and its application for nanogenerator. Polym. Adv. Technol. 29(1), 143–150 (2018)Google Scholar
  43. Song, W.L., Cao, M.S., Hou, Z.L., Fang, X.Y., Shi, X.L., Yuan, J.: High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873 K in X-band. Appl. Phys. Lett. 94(23), 233110 (2009)ADSGoogle Scholar
  44. Song, S.X., Zheng, Z.H., Bi, Y.J., Lv, X., Sun, S.L.: Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer. J. Mater. Sci. 54(5), 3832–3846 (2019)ADSGoogle Scholar
  45. Thakur, P., Kool, A., Hoque, N.A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., Das, S.: Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy 44, 456–467 (2018)Google Scholar
  46. Thomas, P., Satapathy, S., Dwarakanath, K., Varma, K.B.R.: Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym. Lett. 4(10), 632–643 (2010)Google Scholar
  47. Tong, G.X., Ma, J., Wu, W.H., Hua, Q., Qiao, R., Qian, H.S.: Grinding speed dependence of microstructure, conductivity, and microwave electromagnetic and absorbing characteristics of the flaked Fe particles. J. Mater. Res. 26(5), 682–688 (2011)ADSGoogle Scholar
  48. Vijayaprasath, G., Murugan, R., Asaithambi, S., Babu, G.A., Sakthivel, P., Mahalingam, T., Hayakawa, Y., Ravi, G.: Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles. Appl. Phys. A-Mater. 122(2), 122 (2016)ADSGoogle Scholar
  49. Wang, Z., Wang, T., Wang, C., Xiao, Y.J., Jing, P.P., Cui, Y.F., Pu, Y.P.: Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders, Ba(Fe0.5Ta0.5)O-3, for high energy-storage density at low electric field. ACS Appl. Mater. Int. 9(34), 29130–29139 (2017)Google Scholar
  50. Wang, S.T., Sun, J., Tong, L., Guo, Y.M., Wang, H., Wang, C.C.: Superior dielectric properties in Na0.35%Ba99.65%Ti99.65%Nb0.35%O3/PVDF composites. Mater. Lett. 211, 114–117 (2018)Google Scholar
  51. Wen, B., Cao, M.S., Lu, M.M., Cao, W.Q., Shi, H.L., Liu, J., Wang, X.X., Jin, H.B., Fang, X.Y., Wang, W.Z., Yuan, J.: Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484–3489 (2014)ADSGoogle Scholar
  52. Xing, C.Y., Zhao, L.P., You, J.C., Dong, W.Y., Cao, X.J., Li, Y.J.: Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 116(28), 8312–8320 (2012)Google Scholar
  53. Yang, L.Y., Li, X.Y., Allahyarov, E., Taylor, P.L., Zhang, Q.M., Zhu, L.: Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 54(7), 1709–1728 (2013)Google Scholar
  54. Yu, L., Cebe, P.: Crystal polymorphism in electrospun composite nanofibers of poly(vinylidene fluoride) with nanoclay. Abstr. Pap. Am. Chem. S 238, 2133–2141 (2009)Google Scholar
  55. Yu, K., Hu, S., Yu, W.D., Tan, J.Q.: Piezoelectric and dielectric properties of (0.970(0.95(K0.485Na0.515)NbO3–0.05LiSbO3)–0.015CuO–0.015Al2O3)/PVDF composites at different immersing conditions. J. Electron. Mater. 48(9), 5919–5932 (2019)ADSGoogle Scholar
  56. Zak, A.K., Gan, W.C., Abd Majid, W.H., Darroudi, M., Velayutham, T.S.: Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films. Ceram. Int. 37(5), 1653–1660 (2011)Google Scholar
  57. Zhang, Q.Q., Gao, F., Hu, G.X., Zhang, C.C., Wang, M., Qin, M.J., Wang, L.: Characterization and dielectric properties of modified Ba0.6Sr0.4TiO3/poly(vinylidene fluoride) composites with high dielectric tunability. Compos. Sci. Technol. 118, 94–100 (2015)Google Scholar
  58. Zhang, Y., Liu, C.H., Liu, J.B., Xiong, J., Liu, J.Y., Zhang, K., Liu, Y.D., Peng, M.Z., Yu, A.F., Zhang, A.H., Zhang, Y., Wang, Z.W., Zhai, J.Y., Wang, Z.L.: Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Appl. Mater. Int. 8(2), 1381–1387 (2016)Google Scholar
  59. Zhou, Y., Zhang, J.C., Li, L., Su, Y.L., Cheng, J.R., Cao, S.X.: Multiferroic composites in nano-microscale with non-solid solution by Co-ferrite and (K0.5Na0.5)NbO3-based ferroelectric matrix. J. Alloy Compd. 484(1), 535–539 (2009)Google Scholar
  60. Zhou, W.Y., Wang, Z.J., Dong, L.N., Sui, X.Z., Chen, Q.G.: Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos. Part A-Appl. S 79, 183–191 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan CityPeople’s Republic of China
  2. 2.Engineering Research Center of Nano-Geomaterials of Ministry of EducationChina University of GeosciencesWuhanPeople’s Republic of China

Personalised recommendations