Advertisement

Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing

  • Lazhar Kassa-BaghdoucheEmail author
  • Eric Cassan
Original Research
  • 83 Downloads

Abstract

In this paper, the sensitivity of slotted photonic crystal waveguides (SPCW) with triangular lattice pattern of ring-shaped holes is analyzed in order to realize highly refractive index (RI) sensor devices at mid-infrared wavelengths. The sensing principle is based on the shift of the transmission spectrum edge of these specific ring hole SPCW waveguides giving rise to reinforced light–matter interaction. The 3D simulation results applied to silicon waveguides on membrane show that this guide geometry leads to a very high sensitivity to variations in the ambient environment index, with very dependent trends on the opto-geometric factors of the waveguides. As a matter of example, a \(720 \,\mathrm{nm}\) wavelength position band edge shift is predicted, corresponding to a sensitivity of more than \(1450 \,\mathrm{nm}\) per refractive index unit with a device insertion loss level of \(-\,3 \,\mathrm{dB}\).

Keywords

Slotted photonic crystal waveguides Ring air holes 3D-PWE 3D-FDTD Refractive index sensing 

Notes

References

  1. Caer, C., Le Roux, X., Marris-Morini, D., Izard, N., Vivien, L., Gao, D., Cassan, E., et al.: Dispersion engineering of wide slot photonic crystal waveguides by Bragg-like corrugation of the slot. IEEE Photon. Technol. Lett. 23(18), 1298–1300 (2011)ADSCrossRefGoogle Scholar
  2. Caer, C., Le Roux, X., Cassan, E.: Enhanced localization of light in slow wave slot photonic crystal waveguides. Opt. Lett. 37(17), 3660–3662 (2012)ADSCrossRefGoogle Scholar
  3. Charles Caër, X.L.R.E.C., Combrié, S., Rossi, A.D.: Extreme optical confinement in a slotted photonic crystal waveguide. Appl. Phys. Lett. 105, 121111 (2014)ADSCrossRefGoogle Scholar
  4. Di Falco, A., O’Faolain, L., Krauss, T.: Photonic crystal slotted slab waveguides. Photon. Nanostruct. Fundam. Appl. 6(1), 38–41 (2008)ADSCrossRefGoogle Scholar
  5. Di Falco, A., Massari, M., Scullion, M., Schulz, S., Romanato, F., Krauss, T.: Propagation losses of slotted photonic crystal waveguides. IEEE Photon. J. 4(5), 1536–1541 (2012)ADSCrossRefGoogle Scholar
  6. Dutta, H.S., Goyal, A.K., Srivastava, V., Pal, S.: Coupling light in photonic crystal waveguides: a review. Photon. Nanostruct. Fundam. Appl. 20, 41–58 (2016)ADSCrossRefGoogle Scholar
  7. Goyal, A.K., Pal, S.: Design and simulation of high-sensitive gas sensor using a ring-shaped photonic crystal waveguide. Phys. Scr. 90(2), 025503 (2015)ADSCrossRefGoogle Scholar
  8. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a basis. Opt. Express 8(3), 173–190 (2001)ADSCrossRefGoogle Scholar
  9. Kassa-Baghdouche, L., Cassan, E.: Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides. Photon. Nanostruct. Fundam. Appl. 28, 32–36 (2018a)ADSCrossRefGoogle Scholar
  10. Kassa-Baghdouche, L., Cassan, E.: High efficiency slotted photonic crystal waveguides for the determination of gases using mid-infrared spectroscopy. Instrum. Sci. Technol. 46(5), 534–544 (2018b)CrossRefGoogle Scholar
  11. Lai, W.C., Chakravarty, S., Wang, X., Lin, C., Chen, R.T.: On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide. Opt. Lett. 36(6), 984–986 (2011)ADSCrossRefGoogle Scholar
  12. Lai, W.C., Chakravarty, S., Wang, X., Lin, C., Chen, R.T.: Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water. Appl. Phys. Lett. 98(2), 7 (2011)CrossRefGoogle Scholar
  13. Mulot, M., Säynätjoki, A., Arpiainen, S., Lipsanen, H., Ahopelto, J.: Slow light propagation in photonic crystal waveguides with ring-shaped holes. J. Opt. A Pure Appl. Opt. 9(9), S415 (2007)CrossRefGoogle Scholar
  14. Oskooi, A.F., Roundy, D., Ibanescu, M., Bermel, P., Joannopoulos, J.D., Johnson, S.G.: MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181(3), 687–702 (2010)ADSCrossRefGoogle Scholar
  15. Säynätjoki, A., Mulot, M., Ahopelto, J., Lipsanen, H.: Dispersion engineering of photonic crystal waveguides with ring-shaped holes. Opt. Express 15(13), 8323–8328 (2007)ADSCrossRefGoogle Scholar
  16. Scullion, M., Krauss, T., Di Falco, A.: High efficiency interface for coupling into slotted photonic crystal waveguides. IEEE Photon. J. 3(2), 203–208 (2011)ADSCrossRefGoogle Scholar
  17. Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Photon. 4(8), 495 (2010)ADSCrossRefGoogle Scholar
  18. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (2005)zbMATHGoogle Scholar
  19. Zhang, Yn, Zhao, Y., Wang, Q.: Optimizing the slow light properties of slotted photonic crystal waveguide and its application in a high-sensitivity gas sensing system. Measur. Sci. Technol. 24(10), 105109 (2013)ADSCrossRefGoogle Scholar
  20. Zhu, K.T., Deng, T.S., Sun, Y., Zhang, Q.F., Wu, J.L.: Slow light property in ring-shape-hole slotted photonic crystal waveguide. Opt. Commun. 290, 87–91 (2013)ADSCrossRefGoogle Scholar
  21. Zou, Y., Chakravarty, S., Wray, P., Chen, R.T.: Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. Sens. Actuators B Chem. 221, 1094–1103 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronic and Telecommunications, Faculty of Sciences and Technology8 May 1945 University of GuelmaGuelmaAlgeria
  2. 2.Centre for Nanoscience and NanotechnologiesCNRS UMR 9001 - Paris-Sud UniversityPalaiseauFrance

Personalised recommendations