Design and analysis of Vivaldi antenna with enhanced radiation characteristics for mm-wave and THz applications

  • Ritesh Kumar KushwahaEmail author
  • P. Karuppanan


This article presents a novel approach to design Vivaldi antennas for millimeter and Terahertz band applications. The radiation performance of the proposed Vivaldi antenna is enhanced by employing cross shape resonator and abridged rectangular slots at the edge of radiating arms. In the THz regime, the simulated − 10 dB impedance bandwidth is approximately 76 GHz, minimum return loss of − 58.83 dB, VSWR of 1.002, peak gain of 11.77 dB, radiation efficiency of 97.40% and directivity of 11.89 dBi are achieved at the corresponding resonance frequency of 0.603 THz. Further, in order to validate the suggested design method, targeted antennas are fabricated, tested at 0.06125-THz and 0.06215-THz frequency. The significant performance improvement in radiation characteristics are observed over the frequency band from 0.06- to 0.065-THz. The proposed THz antenna useful for the application of video-rate imaging, object imaging, detection of illicit drugs using spectroscopy, Doppler radar and/or on-body techniques and wireless communications. Similarly, the planned mm-wave antenna is useful for the imaging system.


CSR THz band Vivaldi patch antenna THz imaging Security 



The author would like to acknowledge TEQIP-III (MHRD) India and ECED MNNIT- Allahabad Prayagraj (U.P.) India to provide all the support for complition this work.


  1. Akyildiz, I.F., Jornet, J.M.: Electromagnetic wireless nanosensor networks. Nano Commun. Netw. 1(1), 3–19 (2010)CrossRefGoogle Scholar
  2. Bai, J., Shi, S., Prather, D.W.: Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Trans. Microw. Theory Tech. 59(4), 1051–1057 (2011)ADSCrossRefGoogle Scholar
  3. Bourqui, J., Okoniewski, M., Fear, E.C.: Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging. IEEE Trans. Antennas Propag. 58(7), 2318–2326 (2010)ADSCrossRefGoogle Scholar
  4. Cooper, K.B., et al.: A high-resolution imaging radar at 580 GHz. IEEE Microw. Wirel. Compon. Lett. 18(1), 64–66 (2008)CrossRefGoogle Scholar
  5. Ferguson, B., Zhang, X.-C.: Materials for terahertz science and technology. Nat. Mater. 1(1), 26–33 (2002)ADSCrossRefGoogle Scholar
  6. Gibson, P.J.: The Vivaldi aerial. In: Proceedings of 9th European microwave conference, pp. 101–105 (1979)Google Scholar
  7. Hosseinipanah, M., Wu, Q.: Equivalent circuit model for designing of Jerusalem cross-based artificial magnetic conductors. Radioengineering 18, 544–550 (2009)Google Scholar
  8. Hussain, N., Park, I.: Design of a wide-gain-bandwidth metasurface antenna at terahertz frequency. AIP Adv. 7(5), 055313-1–055313-11 (2017)ADSCrossRefGoogle Scholar
  9. Joseph, C.S., et al.: Multimodal optical and terahertz biopsy of non melanoma skin cancers. In: Microscopy Histopathology and Analytics. Optical Society of America, Florida (2018)Google Scholar
  10. Kawase, K., et al.: Mail screening applications of terahertz radiation. Electron. Lett. 46(26), 66–68 (2010)CrossRefGoogle Scholar
  11. Koenig, S., et al.: Wireless sub-THz communication system with high data rate. Nat. Photonics 7(12), 977–981 (2013)ADSCrossRefGoogle Scholar
  12. Kushwaha, R.K., Karuppanan, P., Malviya, L.D.: Design and analysis of novel microstrip patch antenna on photonic crystal in THz. Phys. B Condens. Matter 545, 107–112 (2018a)ADSCrossRefGoogle Scholar
  13. Kushwaha, R.K., Karuppanan, P., Srivastava, Y.: Proximity feed multiband patch antenna array with SRR and PBG for THz applications. Optik 175, 78–86 (2018b)ADSCrossRefGoogle Scholar
  14. Lazaro, A., Villarino, R., Girbau, D.: Design of tapered slot Vivaldi antenna for UWB breast cancer detection. Microw. Opt. Technol. Lett. 53(3), 639–643 (2011)CrossRefGoogle Scholar
  15. Liu, H.-B., et al.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95(8), 1514–1527 (2007)CrossRefGoogle Scholar
  16. Mathanker, S.K., Weckler, P.R., Wang, N.: Terahertz (THz) applications in food and agriculture: a review. Trans. ASABE 56(3), 1213–1226 (2013)Google Scholar
  17. Numan, A.B., Sharawi, M.S.: Extraction of material parameters for metamaterials using a full-wave simulator [education column]. IEEE Antennas Propag. Mag. 55(5), 202–211 (2013)ADSCrossRefGoogle Scholar
  18. Rabbani, M.S., Ghafouri-Shiraz, H.: Liquid crystalline polymer substrate-based THz microstrip antenna arrays for medical applications. IEEE Antennas Wirel. Propag. Lett. 16, 1533–1536 (2017)ADSCrossRefGoogle Scholar
  19. Rebeiz, G.M.: Millimeter-wave and terahertz integrated circuit antennas. Proc. IEEE 80(11), 1748–1770 (1992)ADSCrossRefGoogle Scholar
  20. Shafieha, J.H., Nourinia, J., Ghobadi, C.: Probing the feed line parameters in Vivaldi notch antennas. Prog. Electromagn. Res. 1, 237–252 (2008)CrossRefGoogle Scholar
  21. Shen, Y.-C.: Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. Int. J. Pharm. 417(1-2), 48–60 (2011)CrossRefGoogle Scholar
  22. Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1(2), 97–105 (2007)ADSCrossRefGoogle Scholar
  23. Yang, X., et al.: Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol. 34(10), 810–824 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Communication Laboratory, ECEDMNNIT-AllahabadAllahabad, PrayagrajIndia
  2. 2.ECEDMNNIT-AllahabadAllahabad, PrayagrajIndia

Personalised recommendations