Advertisement

Competing effects of Kerr nonlinearity and K-photon absorptions on continuous-wave laser inscriptions

  • P. Kameni Nteutse
  • Alain M. DikandéEmail author
  • S. Zekeng
Article
  • 55 Downloads

Abstract

Material processing with laser offers a reliable tool in a large variety of micromachining technology, ranging from on-disc inscriptions to cell ablations through DNA combing and imprinting for fabrications of micro and nanofluidic devices. In these applications lasers are designed to operate in specific regimes characterized by their powers and wavelengths, so understanding characteristic properties of the distinct possible laser operation regimes turns out to be a relevant step toward optimization of their uses as well as improvement of the technology. In this work we examine the stability of a model of femtosecond laser intended for laser inscriptions in nonlinear transparent media, taking into consideration the laser-induced material damage and multiphoton ionization. The model approximates the laser dynamics by a complex Ginzburg–Landau equation with a Kerr plus a high-order nonlinear term accounting for K-photon ionization, coupled to a Drude equation for time evolution of the electron plasma density. Following the Benjamin–Feir instability theory it is shown that depending on characteristic parameters of the model, multiphoton ionization processes can stabilize continuous-wave or pulse regimes. These parameters include the group-delay dispersion, the linear and nonlinear gains, the phase shift per roundtrip and the plasma ionization rate.

Keywords

Laser inscription Multiphoton absorptions Continuous-wave operation Modulational instability 

Notes

Acknowledgements

The first author thanks the African Institute for Mathematical Sciences (AIMS)-Rwanda branch, for a visit during which part of this work was completed.

References

  1. Aranson, I.S., Kramer, L.: The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002)ADSMathSciNetCrossRefGoogle Scholar
  2. Chen, C.J., Wai, P.K.A., Menyuk, C.R.: Self-starting of passively mode-locked lasers with fast saturable absorbers. Op. Lett. 20, 350–352 (1995)ADSCrossRefGoogle Scholar
  3. Chryssolouris, G.: Laser Machining: Theory and Practice, 1st edn. Springer, New York (1991)CrossRefGoogle Scholar
  4. Couairon, A., Mysyrowicz, A.: Femtosecond filamentation in transparent media. Phys. Rep. 441, 47–189 (2007)ADSCrossRefGoogle Scholar
  5. Dahotre, N.B., Samant, A.: Laser Machining of Advanced Materials. CRC Press, Taylor and Francis, Boca Raton (2014)Google Scholar
  6. Dikandé, A.M., Voma Titafan, J., Essimbi, B.Z.: Continuous-wave to pulse regimes for a family of passively mode-locked lasers with saturable nonlinearity. J. Opt. 19, 1055041–10550415 (2017)CrossRefGoogle Scholar
  7. Dikandé Bitha, R.D., Dikandé, A.M.: Elliptic-type soliton combs in optical ring microresonators. Phys. Rev. A 97, 0338131–03381312 (2018)CrossRefGoogle Scholar
  8. Dikandé Bitha, R.D., Dikandé, A.M.: Soliton-comb structures in ring-shaped optical microresonators: generation, reconstruction and stability. Eur. Phys. J. D 73, 1521–15212 (2019)CrossRefGoogle Scholar
  9. Eaton, S.M., Zhang, H., Herman, P.R.: Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13, 4708–4716 (2005)ADSCrossRefGoogle Scholar
  10. Grenier, J.R., Fernandes, L.A., Herman, P.R.: Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics. Optics Express 23, 16760–16771 (2015)ADSCrossRefGoogle Scholar
  11. Jubgang Fandio Jr., D., Dikandé, A.M.: Pulse train uniformity and nonlinear dynamics of soliton crystals in mode-locked fiber ring lasers. J. Opt. Soc. Am. B 34, 66–75 (2017)ADSCrossRefGoogle Scholar
  12. Jubgang Fandio Jr., D., Dikandé, A.M., Sunda-Meya, A.: Elliptic solitons in optical fiber media. Phys. Rev. A 92, 0538501–0538507 (2015)CrossRefGoogle Scholar
  13. Jung, J.W., Lee, C.M.: Cutting temperature and laser beam temperature effects on cutting tool deformation in laser-assisted machining. In: Proceedings of IMECS II, pp. 1817–1822 (2009)Google Scholar
  14. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)ADSCrossRefGoogle Scholar
  15. Li, C., Shi, X., Si, J., Chen, F., Chen, T., Zhang, Y., Hou, X.: Photoinduced multiple microchannels inside silicon produced by a femtosecond laser. Appl. Phys. B 98, 377–381 (2010)ADSCrossRefGoogle Scholar
  16. Minoshima, K., Kowalevicz, A.W., Hartl, I., Ippen, E.P., Fujimoto, J.G.: Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator. Opt. Lett. 26, 1516–1518 (2001)ADSCrossRefGoogle Scholar
  17. Nithyanandan, K., Porsezian, K.: Interplay between relaxation of nonlinear response and coupling coefficient dispersion in the relaxation spectra of dual core optical fiber. Opt. Commun. 303, 46 (2016)ADSCrossRefGoogle Scholar
  18. Nolte, S., Will, M., Burghoff, J., Tünnermann, A.: Longitudinal coherence in cold atom interferometry. J. Mod. Opt. 51, 2533–2540 (2004)ADSCrossRefGoogle Scholar
  19. Pereira, N.R., Stenflo, L.: Nonlinear Schrödinger equation including growth and damping. Phys. Fluids 20, 1733–1734 (1977)ADSMathSciNetCrossRefGoogle Scholar
  20. Petrovic, J.S., Mezentsev, V., Schmitz, H., Bennion, I.: Model of the femtosecond laser inscription by a single pulse. Opt. Quantum Electron. 39, 939–946 (2007)CrossRefGoogle Scholar
  21. Porsezian, K., Nithyanandan, K., Jayakantha, R.R.V., Shukla, P.K.: Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system. J. Opt. Soc. Am. B 29, 2803–2813 (2012)ADSCrossRefGoogle Scholar
  22. Rapaport, A., Szipöcs, F., Bass, M.: Dependence of two-photon absorption excited fluorescence in dye solutions on the angle between the linear polarizations of two intersecting beams. Appl. Phys. B 78, 65–72 (2004)ADSCrossRefGoogle Scholar
  23. Savastru, D., Savastru, R., Miclos, S., Lancranjan, I.I.: Simulation of laser induced absorption phenomena in transparent materials. Opt. Laser Eng. 110, 288–295 (2018)CrossRefGoogle Scholar
  24. Schaffer, C.B., Garcia, J.F., Mazur, E.: Bulk heating of transparent materials using a high-repetition-rate femtosecond laser. Appl. Phys. A 76, 351–354 (2003)ADSCrossRefGoogle Scholar
  25. Shin, H., Kim, D.: Cutting thin glass by femtosecond laser ablation. Opt. Laser Technol. 102, 1–11 (2018)ADSCrossRefGoogle Scholar
  26. Shukla, P.K., Lawrence, J., Zhang, Y.: Understanding laser beam brightness: a review and new prospective in material processing. Opt. Laser technol. 75, 40–51 (2015)ADSCrossRefGoogle Scholar
  27. Siiman, L.A., Lumeau, J., Glebov, L.: Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses. Appl. Phys. B 96, 127–134 (2009)ADSCrossRefGoogle Scholar
  28. Soto-Crespo, J.M., Akhmediev, N.N.: Multisoliton regime of pulse generation by lasers passively mode locked with a slow saturable absorber. J. Opt. Soc. Am. B 16, 674–677 (1999)ADSCrossRefGoogle Scholar
  29. Soto-Crespo, J.M., Akhmediev, N.N., Afanasjev, V.V.: Stability of the pulselike solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. B 13, 1439–1449 (1996)ADSCrossRefGoogle Scholar
  30. Soto-Crespo, J.M., Akhmediev, N.N., Town, G.: Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber. J. Opt. Soc. Am. B 19, 234–242 (2002)ADSCrossRefGoogle Scholar
  31. Soto-Crespo, J.M., Grapinet, M., Grelu, Ph, Akhmediev, N.N.: Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 70, 0666121–06661210 (2004)CrossRefGoogle Scholar
  32. Stolze, M., Herrmann, T., L’huillier, J. A.: Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXI (Proceedings of SPIE 9735, 97350O, March 14th) (2016)Google Scholar
  33. Sudrie, L., Couairon, A., Franco, M., Lamouroux, B., Prade, B., Tzortzakis, S., Mysyrowicz, A.: Femtosecond laser-induced damage and filamentary propagation in fused silica. Phys. Rev. Lett. 89, 1866011–1866014 (2002)CrossRefGoogle Scholar
  34. Tchofo Dinda, P., Porsezian, K.: Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity. J. Opt. Soc. Am. B 27, 1143–1152 (2010)ADSCrossRefGoogle Scholar
  35. Valenzuela, A., Munson, A., Porwitzky, A., Weidman, M., Richardson, M.: Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys. Appl. Phys. B 116, 485–491 (2014)ADSCrossRefGoogle Scholar
  36. Wang, Zh, Li, Y.B., Bai, F., Wang, C.W., Zhao, Q.Z.: Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing. Opt. Laser Tchenol. 81, 60–66 (2016)ADSCrossRefGoogle Scholar
  37. Wu, M., et al.: The influence of the ionization regime on femtosecond laser beam machining mono-crystalline diamond. Opt. Laser Technol. 106, 34–39 (2018)ADSCrossRefGoogle Scholar
  38. Xu, H.B., Hu, J., Sheng, H., Du, Z.C.: Thermal stress analysis for laser cutting corner with a fluctuant cutting speed in steel plate. J. Phys. Conf. Ser. 633, 0120901–0120907 (2015)CrossRefGoogle Scholar
  39. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D 238, 540–548 (2009)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.African Institute for Mathematical Sciences (AIMS)LimbeCameroon
  2. 2.Laboratory of Research on Advanced Materials and Nonlinear Sciences, Department of Physics, Faculty of ScienceUniversity of BueaBueaCameroon
  3. 3.Laboratory of Mechanics, Materials and Structure, Department of Physics, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations