A comprehensive investigation on the properties of nanostructured cerium oxide

  • Jayakumar G. Email author
  • Albert Irudayaraj A. 
  • Dhayal Raj A. 


The structural, optical, magnetic and electrical properties of cerium oxide (CeO2) nanoparticles prepared by hydrothermal route are analyzed by subjecting them to characterization techniques such as Powder X-ray diffraction (PXRD), High resolution scanning electron microscope (HRSEM), High resolution transmission electron microscope (HRTEM), Energy Dispersive X-ray Analysis (EDAX), Fourier transform infra red spectroscopy (FTIR), Raman spectroscopy, Ultraviolet–Visible analysis, Vibrating sample magnetometer (VSM) analysis and Dielectric measurements. The PXRD, FTIR, Raman and EDAX analyses confirm the formation of CeO2 nanoparticles. The PXRD studies reveal that the cerium oxide nanoparticles have crystalline nature and have Face Centered Cubic structure. The average crystallite size, estimated using Scherrer formula, is 7 nm. The HRSEM and HRTEM images reveal that the CeO2 nanoparticles have spherical morphology with an average particle size of 23 nm. The optical band gap energy of the cerium oxide nanoparticles, calculated from UV–Vis studies, is 3.4 eV which could be due to the substantial concentration of Ce3+ ions in the ceria nanoparticles. The Ferromagnetic behavior of CeO2 at room temperature is implied from VSM studies. The Dielectric analysis divulge that the dielectric constant of cerium oxide nanoparticles decreases as the frequency and temperature increases. The electrical behaviour, activation energy and relaxation time of electrons of CeO2 nanoparticles are studied by plotting Nyquist plot, Arrhenius plot and Bode plot respectively.


Luminescence Ferromagnetism Crystallite size Particle size Activation energy 



  1. Andrade, A.B., Ferreira, N.S., Valerio, M.E.G.: Particle size effects on structural and optical properties of BaF2 nanoparticles. RSC Adv. 7(43), 26839–26848 (2017)CrossRefGoogle Scholar
  2. Ansari, A.A., Kaushik, A., Solanki, P.R., Malhotra, B.D.: Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. J. Electrochem. Commun. 10, 1246–1249 (2008)CrossRefGoogle Scholar
  3. Channei, D., Inceesungvorn, B., Wetchakun, N., Phanichphant, S., Nakaruk, A., Koshy, P., et al.: Photocatalytic activity under visible light of Fe-doped CeO2 nanoparticles synthesized by flame spray pyrolysis. Ceram. Int. 39, 3129–3134 (2013)CrossRefGoogle Scholar
  4. Chen, Y., Liu, T., Chen, C., Guo, W., Sun, R., Lv, S., et al.: Synthesis and characterization of CeO2 nano-rods. J. Ceram. Int. 39, 6607–6610 (2013)CrossRefGoogle Scholar
  5. Choudhury, B., Chetri, P., Choudhury, A.: Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4, 4663–4671 (2014)CrossRefGoogle Scholar
  6. Cui, J., Hope, G.A.: Raman and fluorescence spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. J. Spectrosc. 2015, 1–8 (2015)CrossRefGoogle Scholar
  7. Dang, F., Kato, K., Imai, H., Wada, S., Haneda, H., Kuwabara, M.: Characteristics of CeO2 nanocubes and related polyhedra prepared by using a liquid − liquid interface. Cryst. Growth Des. 10(10), 4537–4541 (2010)CrossRefGoogle Scholar
  8. Devi, U.N., Rayappan, J.B.B., Jeyaprakash, B.G.: Confirmation of ceria-polyaniline core-shell nanostructure: an optical approach. J. Appl. Sci. 12(6), 1750–1753 (2012)Google Scholar
  9. Dos Santos, M.L., Lima, R.C., Riccardi, C.S., Tranquilin, R.L., Bueno, P.R., Varela, J.A., Longo, E.: Preparation and characterization of ceria nanospheres by microwave hydrothermal method. Mater. Lett. 62, 4509–4511 (2008a)CrossRefGoogle Scholar
  10. Dos Santos, M.L., Lima, R.C., Riccardi, C.S., Tranquilin, R.L., Bueno, P.R., Varela, A.: Preparation and characterization of ceria nanospheres by microwave-hydrothermal method. Mater. Lett. 62(30), 4509–4511 (2008b)CrossRefGoogle Scholar
  11. Farahmandjou, M., Zarinkamar, M., Firoozabadi, T.P.: Synthesis of cerium oxide (CeO2) nanoparticles using simple co-precipitation method. Rev. Mex. Fis. 62, 496–499 (2016)Google Scholar
  12. Fernandez-Garcia, M., Rodriguez, J.A.: Metal Oxide Nanoparticles. Brookhaven National Laboratory, BNL-79479-2007-BC (2007)Google Scholar
  13. Gangopadhyay, S., Frolov, D.D., Masunov, A.E., Seal, S.: Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloy. Compd. 584, 199–208 (2014)CrossRefGoogle Scholar
  14. Goharshadi, Elaheh K., Samiee, S., Nancarrow, P.: Fabrication of cerium oxide nanoparticles: characterization and optical properties. J. Colloid Int. Sci. 356, 473–480 (2011)ADSCrossRefGoogle Scholar
  15. Hammoud, H., Vauchera, S., Valdivieso, F.: Dielectric and thermal properties of cerium dioxide up to 1000 ℃ and the effect of the porosity for microwave processing studies. Thermochim. Acta 617, 83–89 (2015)CrossRefGoogle Scholar
  16. Han, L., Su, B., Liu, G., Zheng, M., An, X.: Synthesis of oxygen vacancy-rich black TiO2 nanoparticles and the visible light photocatalytic performance. Mol. Catal. 456, 96–101 (2018)CrossRefGoogle Scholar
  17. Izu, N., Matsubara, I., Itoh, T., Akamatsu, T., Shin, W.: CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles. Sensors 13, 3252–3261 (2013)CrossRefGoogle Scholar
  18. Jayakumar, G., Irudayaraj, A.A., Raj, A.D., Anusuya, M.: Investigation on the preparation and properties of nanostructured cerium oxide. Nanosyst.: Phys. Chem. Math. 7(4), 728–731 (2016)Google Scholar
  19. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A., Danquah, M.K.: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018)CrossRefGoogle Scholar
  20. Ji, Z., Wang, X., Zhang, H., Lin, S., Meng, H.: Designed synthesis of CeO2 nanorods and nanowires for studying toxicological effects of high aspect ratio nanomaterials. J. ACS Nano. 6(6), 5366–5380 (2012)CrossRefGoogle Scholar
  21. Khan, M.A.M., Khan, W., Ahamed, M., Alhazaa, A.N.: Microstructural properties and enhanced photocatalytic performance of Zn doped CeO2 nanocrystals. Sci. Rep. 7(1), 1–11 (2017)CrossRefGoogle Scholar
  22. Kumar, E., Selvarajan, P., Muthuraj, D.: Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater. Res. 16(2), 269–276 (2013)CrossRefGoogle Scholar
  23. Mai, H.-X., Sun, L.-D., Zhang, Y.-W., Si, R., Feng, W., Zhang, H.-P., et al.: Size, shape and structural control of metallic nanocrystals. J. Phys. Chem. B 109, 24380–24385 (2005)CrossRefGoogle Scholar
  24. Masui, T., Hirai, H., Imanaka, N., Adachi, G., Sakata, T., Mori, H.: Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. J. Mater. Sci. Lett. 21, 489–491 (2002)CrossRefGoogle Scholar
  25. Onyia, A.I., Ikeri, H.I., Nwobodo, A.N.: Theoretical study of the quantum confinement effects on quantum dots using particle in a box model. J. Ovonic Res. 14(1), 49–54 (2018)Google Scholar
  26. Phokha, S., Pinitsoontorn, S., Maensiri, S.: Structure and magnetic properties of monodisperse Fe3+-doped CeO2 nanospheres. Nano-Micro Lett. 5(4), 223–233 (2013)CrossRefGoogle Scholar
  27. Prabaharan, D.M.D.M., Sadaiyandi, K., Mahendran, M., Sagadevan, S.: Structural, optical, morphological and dielectric properties of cerium oxide nanoparticles. Mater. Res. 19(2), 478–482 (2016)CrossRefGoogle Scholar
  28. Roduner, E.: Size matters: why nanomaterials are different. Chem. Soc. Rev. 35, 583–592 (2006)CrossRefGoogle Scholar
  29. Sakara, M., Arumugam, S., Tripathy, S., Balakumar, S.: On the surface magnetism induced atypical ferromagnetic behavior of cerium oxide (CeO2) nanoparticles (2012).
  30. Sarpoushi, M.R., Nasibi, M., Golozar, M.A., Shishesaz, M.R., Borhani, M.R., Noroozi, S.: Electrochemical investigation of graphene/cerium oxide nanoparticles as an electrode material for super capacitors. Mater. Sci. Semicond. Process. 26, 374–378 (2014)CrossRefGoogle Scholar
  31. Sathyamurthy, S., Leonard, K.J., Dabestani, R.T.: Reverse micellar synthesis of cerium oxide nanoparticles. J. Nanotechnol. 16, 1960–1964 (2005)ADSCrossRefGoogle Scholar
  32. Sheibley, Dean W., Maurice, H.: Fowler Infrared Spectra of Various Metal Oxides in the Region of 2 to 26 Microns. NASA, Washington (1966)Google Scholar
  33. Soni, S., Kumar, S., Dalela, B., Kumar, S., Alvi, P.A., Dalela, S.: Defects and oxygen vacancies tailored structural and optical properties in CeO2 nanoparticles doped with Sm3+ Cation. J. Alloy. Compd. 752, 520–531 (2018)CrossRefGoogle Scholar
  34. Sridharan, P., Vinothkumar, G., Pratheesh, P., Babu, K.S.: Modulation of biomimetic properties of cerium oxide nanoparticles by hypoxic tumor microenvironments: steering towards tumor specificity. New J. Chem. 42(8), 6370–6380 (2018)CrossRefGoogle Scholar
  35. Sujana, M.G., Chattopadyay, K.K., Anand, S.: Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system. Appl. Surf. Sci. 254, 7405–7409 (2008)ADSCrossRefGoogle Scholar
  36. Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., Rao, C.N.R.: Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 74(16), 1–6 (2006)CrossRefGoogle Scholar
  37. Supakanapitak, S., Boonamnuayvitaya, V., Jarudilokkul, S.: Synthesis of nanocrystalline CeO2 particles by different emulsion methods. Mater. Charact. 67, 83–92 (2012)CrossRefGoogle Scholar
  38. Suresh, R., Ponnuswamy, V., Mariappan, R.: Effect of solvent and substrate temperature on morphology of cerium oxide thin films by simple nebuliser spray pyrolysis technique. Mater. Technol. 30(1), 12–22 (2015)CrossRefGoogle Scholar
  39. Thakur, N., Manna, P., Das, J.: Synthesis and biomedical applications of nanoceria, a redox active nanoparticle. Nanotechnology 17(1), 1–27 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSacred Heart CollegeTirupattur, Vellore DistrictIndia

Personalised recommendations