Color optimization of red OLEDs via periodic and gradient deposition rate of fluorescent dopants

  • Mohammad JanghouriEmail author
  • Ezeddin Mohajerani


We have investigated a method to enhance the light emission efficiency and color tuning for mixture of dyes with varying the growth parameters, during Alq3:Nile Red deposition. We used solvent bath and green laser (532 nm) for improvement of the performance of devices. This paper presents two kind of evaporation method, periodic and gradient. We observed that periodic emission layers can greatly improve the device performances such as electroluminescence, chromaticity coordinates, luminance, and reduced the turn on voltage. The periodic 3 structure with evaporation rate of (0.1 → 3 → 2 → 3 → 2 → 0.1 A°/s) has a luminance of 3000 cd/m2 and maximum efficiency of 1.8 cd/A at 18 V which are the highest values among devices.


Color tuning Periodic and gradient evaporation Solvent bath Green laser 



The author would like to thank the Urmia University of Technology and Shahid Beheshti University for supporting this work.


  1. Abedi, Z., Janghouri, M., Mohajerani, E., Alahbakhshi, M., Azari, A., Fallahi, A.: Study of various evaporation rates of the mixture of Alq3: DCM in a single furnace crucible. J. Lumin. 147, 9–14 (2014)CrossRefGoogle Scholar
  2. Burrows, P.E., Forrest, S.R.: Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices. Appl. Phys. Lett. 64, 2285–2287 (1994)ADSCrossRefGoogle Scholar
  3. Chen, B.J., Lai, W.Y., Gao, Z.Q., Lee, C.S., Lee, S.T., Gambling, W.A.: Electron drift mobility and electroluminescent efficiency of tris (8-hydroxyquinolinolato) aluminum. Appl. Phys. Lett. 75, 4010–4012 (1999)ADSCrossRefGoogle Scholar
  4. Cheng, L.F., Liao, L.S., Lai, W.Y., Sun, X.H., Wong, N.B., Lee, C.S., Lee, S.T.: Effect of deposition rate on the morphology, chemistry and electroluminescence of tris-(8-hydroxyqiunoline) aluminum films. Chem. Phys. Lett. 319, 418–422 (2000)ADSCrossRefGoogle Scholar
  5. D’Andrade, B.W., Forrest, S.R.: White organic light-emitting devices for solid-state lighting. Adv. Mater. 16, 1585–1595 (2004)CrossRefGoogle Scholar
  6. Garbuzov, D.Z., Bulović, V., Burrows, P.E., Forrest, S.R.: Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films. Chem. Phys. Lett. 249, 433–437 (1996)ADSCrossRefGoogle Scholar
  7. Janghouri, M., Mohajerani, E., Khabazi, A., Abedi, Z., Razavi, H.: Effect of doping different dyes in Alq3 on electroluminescence and morphology of layers using single furnace method. J. Lumin. 140, 7–13 (2013)CrossRefGoogle Scholar
  8. Janghouri, M., Mohajerani, E., Amini, M.M., Najafi, E.: Red organic light emitting device based on TPP and a new host material. Appl. Phys. A 114, 445–451 (2014)ADSCrossRefGoogle Scholar
  9. Kafafi, Z.H.: Organic Electroluminescence. CRC Press, Boca Raton (2005)Google Scholar
  10. Kido, J., Kimura, M., Nagai, K.: Multilayer white light-emitting organic electroluminescent device. Science 267, 1332–1334 (1995)ADSCrossRefGoogle Scholar
  11. Lax, M.: Cascade capture of electrons in solids. Phys. Rev. 119, 1502–1523 (1960)ADSCrossRefGoogle Scholar
  12. Lee, C.B., Uddin, A., Hu, X., Anderssonb, T.G.: Study of Alq3 thermal evaporation rate effects on the OLED. Mater. Sci. Eng. B 112, 14–18 (2004)CrossRefGoogle Scholar
  13. Lin, H.P., Zhou, F., Li, J., Zhang, X.W., Yu, D.B., Zhang, L., Zhang, Z.L.: A high performance of BPhen-based white organic light-emitting devices with a dual-emitting layer and its electroluminescent spectral property. J. Ind. Eng. Chem. 17, 675–680 (2011)CrossRefGoogle Scholar
  14. Liu, J., Shao, S.Y., Chen, L., Xie, Z.Y., Cheng, Y.X., Geng, Y.H., Wang, L.X., Jing, X.B., Wang, F.S.: White electroluminescence from a single polymer system: improved performance by means of enhanced efficiency and red-shifted luminescence of the blue-light-emitting species. Adv. Mater. 19, 1859–1863 (2007)CrossRefGoogle Scholar
  15. Mahmoudi, M., Janghouri, M., Mohajerani, E.: Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace. J. Lumin. 160, 210–215 (2015)CrossRefGoogle Scholar
  16. Morris, R., Silver, M.: Direct electron–hole recombination in anthracene. J. Chem. Phys. 50, 2969–2973 (1969)ADSCrossRefGoogle Scholar
  17. Onsager, L.: Deviations from Ohm’s law in weak electrolytes. J. Chem. Phys. 2, 599–615 (1934)ADSCrossRefGoogle Scholar
  18. Song, H.J., Lee, J.Y., Song, I.S., Moon, D.K., Haw, J.R.: Synthesis and electroluminescence properties of fluorene–anthracene based copolymers for blue and white emitting diodes. J. Ind. Eng. Chem. 17, 352–357 (2011)CrossRefGoogle Scholar
  19. Sun, Y., Giebink, N.C., Kanno, H., Ma, B., Thompson, M.E., Forrest, S.R.: Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908 (2006)ADSCrossRefGoogle Scholar
  20. Szmytkowski, J., Stampor, W., Kalinowski, J., Kafafi, Z.H.: Electric field-assisted dissociation of singlet excitons in tris-(8-hydroxyquinolinato) aluminum (III). Appl. Phys. Lett. 80, 1465–1467 (2002)ADSCrossRefGoogle Scholar
  21. Yook, K.S., Lee, J.Y.: Effect of the interlayer composition on the lifetime and color change of hybrid white organic light-emitting diodes. J. Ind. Eng. Chem. 17, 642–644 (2011)CrossRefGoogle Scholar
  22. Zhang, F., Xu, Z., Zhao, D., Zhao, S., Jiang, W., Yuan, G., Xu, X.: Influence of evaporation conditions of Alq3 on the performance of organic light emitting diodes. J. Phys. D Appl. Phys. 40, 4485 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Laser and Plasma Research InstituteShahid Beheshti University, G.C.TehranIran

Personalised recommendations