Improvement of the CIGS solar cell performance: structure based on a ZnS buffer layer

  • Souad TobbecheEmail author
  • Salim Kalache
  • Mourad Elbar
  • Mohamed Nadjib Kateb
  • Mohamed Redha Serdouk


Cu(In,Ga)Se2 (CIGS) based thin film solar cells are the most efficient thin-film solar cells today. The non-toxic and wide band-gap zinc sulphide (ZnS) is a promising material to replace the cadmium sulfide (CdS) as the buffer layer in CIGS based solar cells. In this work we present a simulation study of a CIGS based solar cell with a buffer layer of ZnS, using the simulator Silvaco-Atlas. Our primary simulation shows a 22.6% efficiency of the CIGS solar cell with the CdS buffer layer which is comparable to reported and highest experimental results. However, the simulated efficiency of the CIGS solar cell with the ZnS buffer layer as high as 23.54% was achieved. The effects of layer parameters like the thickness, the acceptor and donor densities of the CIGS absorber and ZnS buffer layers and the CBO on the photovoltaic parameters of the ZnS/CIGS solar cell are optimized in order to improve the performance of the ZnS/CIGS solar cell. The highest efficiency of 27.33% is achieved when the ZnS buffer and the CIGS absorber layers have thicknesses of 0.025 µm and 4 µm with acceptor and donor densities of 6 × 1017 cm−3 and 1018 cm−3, respectively and a CBO in the range − 0.05 to 0.05 eV. The present results of simulation can help the development of the solar cells with higher conversion efficiency and low cost.


CIGS thin film solar cell ZnS buffer layer Simulation Optimization Silvaco-Atlas 



  1. Asaduzzaman, Md., Bahar, A.N., Bhuiyan, M.M.R.: Dataset demonstrating the modeling of a high performance Cu(In, Ga)Se2 absorber based thin film photovoltaic cell. Data Brief 11, 296–300 (2017a)CrossRefGoogle Scholar
  2. Asaduzzaman, Md, Billal Hosen, Md, Karamot Ali, Md, Newaz Bahar, A.: Non-toxic buffer layers in flexible Cu(In, Ga)Se2 photovoltaic cell applications with optimized absorber thickness. Int. J. Photoener. 2017, 187–191 (2017b)CrossRefGoogle Scholar
  3. Atlas User’s Manual device simulation software. Silvaco, Inc, Santa Clara, USA (2013)Google Scholar
  4. Bechlaghem, S., Zebentout, B., Benamara, Z.: The major influence of the conduction-band-offset on Zn (O, S)/CuIn0.7Ga0.3Se2 solar cells. Results. Phys. 10, 650–654 (2018)ADSCrossRefGoogle Scholar
  5. Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10(3), S387–S391 (2010)ADSCrossRefGoogle Scholar
  6. Elbar, M., Tobbeche, S., Merazga, A.: Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. J. Sol. Energy. 125, 104–112 (2015)ADSCrossRefGoogle Scholar
  7. Faraj, M.G., Ibrahim, K., Salhin, A.: Investigation of CIGS solar cells on polyethylene terephthalate substrates. Int. J. Polym. Mater. 60(10), 817–824 (2011)CrossRefGoogle Scholar
  8. Fridolin, T.N., Maurel, D.K.G., Ejuh, G.W., Bénédicte, T.T., Marie, N.J.: Highlighting some layer’s properties in performances optimization of CIGSe based solar cells: case of Cu (In, Ga) Se–ZnS. J. King Saud Univ. Sci. (2018). CrossRefGoogle Scholar
  9. Friedlmeier, T.M., Jackson, P., Bauer, A., Hariskos, D., Kiowski, O., Wuerz, R., Powalla, M.: Improved photocurrent in Cu(In, Ga)Se2 solar cells: from 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. J. Photovolt. 5, 1487–1491 (2015)CrossRefGoogle Scholar
  10. Gloeckler, M., Fahrenbruch, A.L., Sites, J.R.: Numerical modeling of CIGS and CdTe solar cells: setting the baseline. In: 3rd World Conference on Photovoltaic Energy Conversion, pp. 491–494 (2003)Google Scholar
  11. Haque, F., Khan, N.A., Rahman, K.S., Islam, M.A., Alam, M.M., Sopian, K., Amin, N.: Prospects of zinc sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis. In: 8th International Conference on Electrical and Computer Engineering, pp. 504–507 (2014)Google Scholar
  12. Hariskos, D., Spiering, S., Powalla, M.: Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films 480, 99–109 (2005)ADSCrossRefGoogle Scholar
  13. Hosen, M.B., Bahar, A.N., Ali, M.K., Asaduzzaman, M.: Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer. Data Brief 14, 246–250 (2017)CrossRefGoogle Scholar
  14. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., Powalla, M.: Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi RRL 10, 583–586 (2016)CrossRefGoogle Scholar
  15. Khoshsirat, N., Yunus, N.A.M., Hamidon, M.N., Shafie, S., Amin, N.: Analysis of absorber layer properties effect on CIGS solar cell performance using SCAPS. Optik 126, 681–686 (2015)ADSCrossRefGoogle Scholar
  16. Lindahl, J., Zimmermann, U., Szaniawski, P., Torndahl, T., Hultqvist, A., Salome, P., Platzer-Bjorkman, C., Edoff, M.: Inline Cu(In, Ga)Se2 Co-evaporation for high-efficiency solar cells and modules. IEEE. J. Photovolt. 3, 1100–1105 (2013)CrossRefGoogle Scholar
  17. Luo, K., Sun, Y., Zhou, L., Wang, F., Wu, F.: Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer. J. Semicond. 38(8), 084006 (2017)ADSCrossRefGoogle Scholar
  18. Martin Green, A., Emery, K., Hishikawa, Y., Warta, W., Ewan Dunlop, D., Dean Levi, H., Anita Ho-Baillie, W.Y.: Solar cell efficiency tables (Version 49). Prog. Photovolt.: Res. Appl. 25, 23–32 (2016)Google Scholar
  19. Mostefaoui, M., Mazari, H., Khelifi, S., Bouraiou, A., Dabou, R.: Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74, 736–744 (2015)CrossRefGoogle Scholar
  20. Movla, H.: Optimization of the CIGS based thin film solar cells: numerical simulation and analysis. Optik 125(1), 67–70 (2014)ADSCrossRefGoogle Scholar
  21. Nakamura, M, Yamaguchi, K, Chiba, Y, Hakuma, H, Kobayashi, T, Nakada, T.: Achievement of 19.7% efficiency, with a small-sized Cu(In,Ga)(Se,S)2 solar cells prepared by sulfurization after selenization process with Zn-based buffer. In: 39th IEEE Photovoltaic Specialists Conference, pp. 0849–0852 (2013)Google Scholar
  22. Park, J., Shin, M.: Numerical optimization of gradient bandgap structure for CIGS solar cell with ZnS buffer layer using technology computer-aided design simulation. Energies 11(7), 1785–1794 (2018)CrossRefGoogle Scholar
  23. Pettersson, J., Törndahl, T., Platzer-Björkman, C., Hultqvist, A., Edoff, M.: The influence of absorber thickness on Cu(In, Ga)Se solar cells with different buffer layers. IEEE. J. Photovolt. 3, 1376–1382 (2013)CrossRefGoogle Scholar
  24. Ramli, H., Rahim, S.K.A., Rahim, T.A., Aminuddin, M.M.: Optimization of zinc sulfide (ZnS) electron affinity in copper indium sulfide (CIS) based photovoltaic cell. Chal. Lett. 10(6), 189–195 (2013)Google Scholar
  25. Richter, M., Schubbert, C., Eraerds, P., Riedel, I., Keller, J., Parisi, J., Dalibor, T., Avellán-Hampe, A.: Optical characterization and modeling of Cu(In, Ga)(Se, S)2 solar cells with spectroscopic ellipsometry and coherent numerical simulation. Thin Solid Films 535, 331–335 (2013)ADSCrossRefGoogle Scholar
  26. Siebentritt, S.: Alternative buffers for chalcopyrite solar cells. Sol. Energy 77, 767–775 (2004)ADSCrossRefGoogle Scholar
  27. Singh, P., Gautam, R., Sharma, S., Kumari, S., Verma, A.S.: Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers. Mater. Sci. Semicond. Process. 42, 288–302 (2016)CrossRefGoogle Scholar
  28. Song, S.H., Nagaich, K., Aydil, E.S., Feist, R., Haley, R., Campbell, S.A.: Structure optimization for a high efficiency CIGS solar cell. In: 35th IEEE Photovoltaic Specialists Conference, pp. 2488–2492 (2010)Google Scholar
  29. Sozzi, G., Troni, F., Menozzi, R.: On the combined effects of window/buffer and buffer/absorber conduction-band offsets, buffer thickness and doping on thin-film solar cell performance. Sol. Energy. Mater. Solar Cell. 121, 126–136 (2014)CrossRefGoogle Scholar
  30. Spiering, S., Nowitzki, A., Kessler, F., Igalson, M., Maksoud, H.A.: Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation. Sol. Energy. Mater. Sol. Cell. 144, 544–550 (2016)CrossRefGoogle Scholar
  31. Sylla, A., Touré, S., Vilcot, J.P.: Theoretical analysis of the effects of band gaps and the conduction band offset of ZnS-CIGS layers, as well as defect layer thickness. Int. J. Sci. Res. 6(11), 855–861. #ijsrnet (2017)
  32. Törndahl, T., Hultqvist, A., Platzer-Björkman, C., Edoff, M.: Growth and characterization of ZnO-based buffer layers for CIGS solar cells. In: Oxide-Based Materials and Devices, vol. 7603, p. 76030D (2010)Google Scholar
  33. Za’Abar, F., Zuhdi, A.W.M., Bahrudin, M.S., Abdullah, S.F., Harif, M.N., Hasani, A.H.: Optimization of baseline parameters and numerical simulation for Cu (In, Ga)Se2 solar cell. In: IEEE International Conference on Semiconductor Electronics (ICSE), pp. 209–213 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Souad Tobbeche
    • 1
    Email author
  • Salim Kalache
    • 1
  • Mourad Elbar
    • 1
  • Mohamed Nadjib Kateb
    • 1
  • Mohamed Redha Serdouk
    • 1
  1. 1.Laboratoire des Matériaux Semiconducteurs et Métalliques (LMSM), Département de Génie-Electrique, Faculté des Sciences et de la TechnologieUniversité de BiskraBiskraAlgeria

Personalised recommendations