Advertisement

Effects of growth temperatures on the structural and optoelectronic properties of sputtered zinc sulfide thin films for solar cell applications

  • Faiazul HaqueEmail author
  • Kazi Sajedur RahmanEmail author
  • Mohammad Aminul Islam
  • Yulisa Yusoff
  • Naveed Aziz Khan
  • Ammar Ahmed Nasser
  • Nowshad AminEmail author
Article
  • 52 Downloads

Abstract

The role of various substrate temperatures on the structural and optoelectronic properties of sputtered zinc sulfide (ZnS) thin films has been investigated in this work. The study of prepared film characterization has been done by XRD, AFM, UV–Vis spectrometry and Hall-effect measurement analysis. XRD patterns of the room temperature grown films reveal an amorphous nature, while the films deposited at 100 °C, 200 °C. 300 °C and 400 °C are found to be polycrystalline having the (111) preferential orientation. The optical bandgap values are found in the range of 3.18–3.61 eV depending on the substrate temperatures. The bulk and surface carrier densities are found in the order of 1012 cm−3 and 107 cm−3, respectively. The growth temperatures are also observed to have a significant effect on the electrical characteristic of the deposited films.

Keywords

Zinc Sulfide Sputtering Substrate temperature Buffer layer Solar cell application 

Notes

Acknowledgements

The authors wish to express the deepest appreciation to the Ministry of Education Malaysia for the support through FRGS grant with the code of FRGS/1/2018/TK05/UNITEN/02/1. Authors would also like to acknowledge the contribution of the Universiti Tenaga Nasional (@The National Energy University) of Malaysia for their contribution through BOLD2025 Program. Gratitude is also attributed to the Center for Integrated Systems Engineering and Advanced Technologies (INTEGRA) of The National University of Malaysia (@UKM) for other supports.

References

  1. Abou-Ras, D., Rudmann, D., Kostorz, G., Spiering, S., Powalla, M., Tiwari, A.N.: Microstructural and chemical studies of interfaces between Cu(In, Ga)Se2 and In2S3 layers. J. Appl. Phys. 97, 084908 (2005)ADSCrossRefGoogle Scholar
  2. Ashokkumar, M., Muthukumaran, S.: Cu doping effect on optical, structural and morphological properties of Cd0.9Zn0.1S thin films. J. Lumin. 145, 167–174 (2014)CrossRefGoogle Scholar
  3. Assadi, M.K., Bakhoda, S., Saidur, R., Hanaei, H.: Recent progress in perovskite solar cells. Renew. Sustain. Energy Rev. 81, 2812–2822 (2018)CrossRefGoogle Scholar
  4. Balaji, G., Balasundaraprabhu, R., Prasanna, S., Prabavathy, N., Venkatraman, M.R., Asokan, V., et al.: Investigations on Hot-wall deposited Cadmium Sulphide buffer layer for thin film solar cell. Mater. Lett. 222, 82–87 (2018)CrossRefGoogle Scholar
  5. Benyahia, K., Benhaya, A., Aida, M.S.: ZnS thin films deposition by thermal evaporation for photovoltaic applications. J. Semicond. 36, 103001 (2015)ADSCrossRefGoogle Scholar
  6. Chalana, S.R., Vinodkumar, R., Navas, I., Ganesan, V., Mahadevan Pillai, V.P.: Influence of argon ambience on the structural, morphological and optical properties of pulsed laser ablated zinc sulfide thin films. J. Lumin. 132, 944–952 (2012)CrossRefGoogle Scholar
  7. Chelvanathan, P., Yusoff, Y., Haque, F., Akhtaruzzaman, M., Alam, M.M., Alothman, Z.A., et al.: Growth and characterization of RF-sputtered ZnS thin film deposited at various substrate temperatures for photovoltaic application. Appl. Surf. Sci. 334, 138–144 (2015)ADSCrossRefGoogle Scholar
  8. Cherouana, A., Labbani, R.: Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. 424, 251–255 (2017)ADSCrossRefGoogle Scholar
  9. Deguchi, H.: Application of solar cell using II–III–VI compound thin film fabricated by conventional sputtering process. Phys. Status Solidi C 11, 1286–1291 (2014)ADSCrossRefGoogle Scholar
  10. Desgreniers, S., Beaulieu, L., Lepage, I.: Pressure-induced structural changes in ZnS. Phys. Rev. B. 61, 8726–8733 (2000)ADSCrossRefGoogle Scholar
  11. Dhawale, D.S., Ali, A., Lokhande, A.C.: Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: a status review. Sustain. Energy Fuels 3, 1365–1383 (2019)CrossRefGoogle Scholar
  12. Eid, A.H., Salim, S., Sedik, M.B., Abd Elkader, O., Dahy, T., Abouelkhair, H.: Preparation and characterization of ZnS thin films. J. Appl. Sci. Res. 6, 777–784 (2010)Google Scholar
  13. Faiazul, H., Kazi Sajedur, R., Md, A., Huda, A., Tiong Sieh, K., Nowshad, A.: Properties of sputtered ZnS thin films for photovoltaic application. Mater. Res. Express. 5, 096409 (2018)CrossRefGoogle Scholar
  14. Fang, L., Jiang, Y., Zhu, S., Ding, J., Zhang, D., Yin, A., et al.: Substrate temperature dependent properties of sputtered AlN: Er thin film for in-situ luminescence sensing of Al/AlN multilayer coating health. Mater. (Basel). 11, 2196 (2018)ADSCrossRefGoogle Scholar
  15. Ghosh, A., Thangavel, R., Gupta, A.: Solution-processed Cd free kesterite Cu2ZnSnS4 thin film solar cells with vertically aligned ZnO nanorod arrays. J. Alloy. Compd. 694, 394–400 (2017)CrossRefGoogle Scholar
  16. Giraldo, S., Jehl, Z., Placidi, M., Izquierdo-Roca, V., Pérez-Rodríguez, A., Saucedo, E.: Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Adv. Mater. 31, 1806692 (2019)CrossRefGoogle Scholar
  17. Han, G., Zhang, S., Boix, P.P., Wong, L.H., Sun, L., Lien, S.-Y.: Towards high efficiency thin film solar cells. Prog. Mater Sci. 87, 246–291 (2017)CrossRefGoogle Scholar
  18. Haque, F., Rahman, K.S., Islam, M.A., Chelvanathan, P., Chowdhury, T.H., Alam, M.M., et al: A comparative study on ZnS thin films grown by thermal evaporation and magnetron sputtering. In: 2013 IEEE Student Conference on Research and Developement. pp. 260–264 (2013)Google Scholar
  19. Haque, F., Khan, N.A., Rahman, K.S., Islam, M., Alam, D.M.M., Sopian, K., et al.: Prospects of zinc sulphide as an alternative buffer layer for CZTS solar cells from numerical analysis. In: 8th International Conference on Electrical and Computer Engineering. pp. 504–507 (2014a)Google Scholar
  20. Haque, F., Rahman, K.S., Islam, M.A., Rashid, M.J., Akhtaruzzaman, M., Alam, M.M., et al.: Growth optimization of ZnS thin films by RF magnetron sputtering as prospective buffer layer in thin film solar cells. Chalcogenide Lett. 11, 189–197 (2014b)Google Scholar
  21. Haque, F., Elumalai, N.K., Wright, M., Mahmud, M.A., Wang, D., Upama, M.B., et al.: Annealing induced microstructure engineering of antimony tri-selenide thin films. Mater. Res. Bull. 99, 232–238 (2018a)CrossRefGoogle Scholar
  22. Haque, F., Wright, M., Mahmud, M.A., Yi, H., Wang, D., Duan, L., et al.: Effects of hydroiodic acid concentration on the properties of CsPbI3 perovskite solar cells. ACS Omega. 3, 11937–11944 (2018b)CrossRefGoogle Scholar
  23. Hernández-Fenollosa, M.A., López, M.C., Donderis, V., González, M., Marí, B., Ramos-Barrado, J.R.: Role of precursors on morphology and optical properties of ZnS thin films prepared by chemical spray pyrolysis. Thin Solid Films 516, 1622–1625 (2008)ADSCrossRefGoogle Scholar
  24. Hong, J., Lim, D., Eo, Y.-J., Choi, C.: Chemical bath deposited ZnS buffer layer for Cu(In, Ga)Se2 thin film solar cell. Appl. Surf. Sci. 432, 250–254 (2018)ADSCrossRefGoogle Scholar
  25. Hsu, C.T.: Epitaxial growth of II–VI compound semiconductors by atomic layer epitaxy. Thin Solid Films 335, 284–291 (1998)ADSCrossRefGoogle Scholar
  26. Hwang, D.H., Ahn, J.H., Hui, K.N., Hui, K.S., Son, Y.G.: Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering. Nanoscale Res. Lett. 7, 26 (2012)ADSCrossRefGoogle Scholar
  27. Islam, M.M., Ishizuka, S., Yamada, A., Sakurai, K., Niki, S., Sakurai, T., et al.: CIGS solar cell with MBE-grown ZnS buffer layer. Sol. Energy Mater. Sol. Cells 93, 970–972 (2009)CrossRefGoogle Scholar
  28. Islam MA, Hossain MS, Aliyu MM, Husna J, Karim MR, Sopian K, et al.: Effects of thermal annealing on structural and optical properties of sputtered CdS thin films for photovoltaic application. In: 2012 38th IEEE Photovoltaic Specialists Conference, pp. 000151-5 (2012a)Google Scholar
  29. Islam, M.A., Hossain, M.S., Aliyu, M.M., Sulaiman, Y., Karim, M.R., Sopian, K. et al.: Comparative study of ZnS thin films grown by chemical bath deposition and magnetron sputtering. In: 2012 7th International Conference on Electrical and Computer Engineering, pp. 86–89 (2012b)Google Scholar
  30. Islam, M.A., Huda, Q., Hossain, M.S., Aliyu, M.M., Karim, M.R., Sopian, K., et al.: High quality 1μm thick CdTe absorber layers grown by magnetron sputtering for solar cell application. Curr. Appl. Phys. 13, S115–S121 (2013)ADSCrossRefGoogle Scholar
  31. Kim, J., Park, C., Pawar, S.M., Inamdar, A.I., Jo, Y., Han, J., et al.: Optimization of sputtered ZnS buffer for Cu2ZnSnS4 thin film solar cells. Thin Solid Films 566, 88–92 (2014)ADSCrossRefGoogle Scholar
  32. Lee, T.D., Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 70, 1286–1297 (2017)CrossRefGoogle Scholar
  33. Lee, W.-J., Cho, D.-H., Yoo, J., Yoo, J., Wi, J.-H., Han, W.S., et al.: Interface and bulk properties of Cu(In, Ga)Se2 solar cell with a cracker-ZnS buffer layer. Curr. Appl. Phys. 18, 405–410 (2018)ADSCrossRefGoogle Scholar
  34. Li, W., Chen, J., Yan, C., Hao, X.: The effect of ZnS segregation on Zn-rich CZTS thin film solar cells. J. Alloy. Compd. 632, 178–184 (2015)CrossRefGoogle Scholar
  35. Lindahl, J., Keller, J., Donzel-Gargand, O., Szaniawski, P., Edoff, M., Törndahl, T.: Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu(In, Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 144, 684–690 (2016)CrossRefGoogle Scholar
  36. Minemoto, T., Okamoto, A., Takakura, H.: Sputtered ZnO-based buffer layer for band offset control in Cu(In, Ga)Se2 solar cells. Thin Solid Films 519, 7568–7571 (2011)ADSCrossRefGoogle Scholar
  37. Mo, C.B., Park, S.J., Bae, S., Lim, M-h, Nam, J., Kim, D., et al.: Impact of buffer layer process and Na on shunt paths of monolithic series-connected CIGSSe thin film solar cells. Sci. Rep. 9, 3666 (2019)ADSCrossRefGoogle Scholar
  38. Moradi, M., Teimouri, R., Saadat, M., Zahedifar, M.: Buffer layer replacement: a method for increasing the conversion efficiency of CIGS thin film solar cells. Opt. Int. J. Light Electron Opt. 136, 222–227 (2017)CrossRefGoogle Scholar
  39. Nagoya, A., Asahi, R., Kresse, G.: First-principles study of Cu2ZnSnS4and the related band offsets for photovoltaic applications. J. Phys. Condens. Matter 23, 404203 (2011)CrossRefGoogle Scholar
  40. Nair, P.K., Nair, M.T.S., Garcı́a, V.M., Arenas, O.L., Peña, A.C.Y., Ayala, I.T., et al.: Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol. Energy Mater. Sol. Cells 52, 313–344 (1998)CrossRefGoogle Scholar
  41. Nakada, T., Mizutani, M., Hagiwara, Y., Kunioka, A.: High-efficiency Cu(In, Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer. Sol. Energy Mater. Sol. Cells 67, 255–260 (2001)CrossRefGoogle Scholar
  42. Nguyen, M., Ernits, K., Tai, K.F., Ng, C.F., Pramana, S.S., Sasangka, W.A., et al.: ZnS buffer layer for Cu2ZnSn(SSe)4 monograin layer solar cell. Sol. Energy 111, 344–349 (2015)ADSCrossRefGoogle Scholar
  43. Offor, P.O., Okorie, B.A., Lokhande, C.D., Patil, P.S., Ezema, F.I., Omah, A.D., et al.: The properties of spray-deposited zinc sulfide thin films using trisodium citrate complexant. Int. J. Adv. Manuf. Technol. 95, 1849–1857 (2018)CrossRefGoogle Scholar
  44. Pal, K., Singh, P., Bhaduri, A., Thapa, K.B.: Current challenges and future prospects for a highly efficient (> 20%) kesterite CZTS solar cell: a review. Sol. Energy Mater. Sol. Cells 196, 138–156 (2019)CrossRefGoogle Scholar
  45. Park, J.Y., Chalapathy, R.B.V., Lokhande, A.C., Hong, C.W., Kim, J.H.: Fabrication of earth abundant Cu2ZnSnSSe4 (CZTSSe) thin film solar cells with cadmium free zinc sulfide (ZnS) buffer layers. J. Alloy. Compd. 695, 2652–2660 (2017)CrossRefGoogle Scholar
  46. Pettersson, J., Platzer-Björkman, C., Edoff, M.: Temperature-dependent current–voltage and lightsoaking measurements on Cu(In, Ga)Se2 solar cells with ALD-Zn1-xMgxO buffer layers. Prog. Photovolt. Res. Appl. 17, 460–469 (2009)CrossRefGoogle Scholar
  47. Qi, L., Mao, G., Ao, J.: Chemical bath-deposited ZnS thin films: preparation and characterization. Appl. Surf. Sci. 254, 5711–5714 (2008)ADSCrossRefGoogle Scholar
  48. Rahman, K.S., Haque, F., Khan, N.A., Islam, M., Alam, M.M., Alothman, Z., et al.: Effect Of CdCl2 treatment on thermally evaporated CdTe thin films. Chalcogenide Lett. 11, 129–139 (2014)Google Scholar
  49. Ramanujam, J., Verma, A., González-Díaz, B., Guerrero-Lemus, R., del Cañizo, C., García-Tabarés, E., et al.: Inorganic photovoltaics—planar and nanostructured devices. Prog. Mater Sci. 82, 294–404 (2016)CrossRefGoogle Scholar
  50. Rumberg, A., Sommerhalter, C., Toplak, M., Jäger-Waldau, A., Lux-Steiner, M.C.: ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells. Thin Solid Films 361–362, 172–176 (2000)CrossRefGoogle Scholar
  51. Shao, L.-X., Chang, K.-H., Hwang, H.-L.: Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl. Surf. Sci. 212–213, 305–310 (2003)ADSCrossRefGoogle Scholar
  52. Shim, H.J., Ghorpade, U.V., Surywanshi, M.P., Gang, M., Kim, J.H.: Studies on the influence of etching solution on the properties of Cu2ZnSn(S, Se4) thin film solar cells. Thin Solid Films 670, 1–5 (2019)ADSCrossRefGoogle Scholar
  53. Shin, S.W., Ra Kang, S., Ho Yun, J., Moholkar, A.V., Moon, J.-H., Yong Lee, J., et al.: Effect of different annealing conditions on the properties of chemically deposited ZnS thin films on ITO coated glass substrates. Sol. Energy Mater. Sol. Cells 95, 856–863 (2011)CrossRefGoogle Scholar
  54. Sinha, S., Nandi, D.K., Kim, S.-H., Heo, J.: Atomic-layer-deposited buffer layers for thin film solar cells using earth-abundant absorber materials: a review. Sol. Energy Mater. Sol. Cells 176, 49–68 (2018)CrossRefGoogle Scholar
  55. Takata, S., Minami, T., Miyata, T., Nanto, H.: Growth of hexagonal ZnS thin films by MOCVD using CS2 gas as a sulfur source. J. Cryst. Growth 86, 257–262 (1988)ADSCrossRefGoogle Scholar
  56. Tec-Yam, S., Rojas, J., Rejón, V., Oliva, A.I.: High quality antireflective ZnS thin films prepared by chemical bath deposition. Mater. Chem. Phys. 136, 386–393 (2012)CrossRefGoogle Scholar
  57. Tumbul, A., Aslan, F., Göktaş, A., Mutlu, I.H.: All solution processed superstrate type Cu2ZnSnS4 (CZTS) thin film solar cell: effect of absorber layer thickness. J. Alloy. Compd. 781, 280–288 (2019)CrossRefGoogle Scholar
  58. Ubale, A.U., Kulkarni, D.K.: Preparation and study of thickness dependent electrical characteristics of zinc sulfide thin films. Bull. Mater. Sci. 28, 43–47 (2005)CrossRefGoogle Scholar
  59. Valenzuela, A.A., Russer, P.: High Q coplanar transmission line resonator of YBa2Cu3O7−x on MgO. Appl. Phys. Lett. 55, 1029–1031 (1989)ADSCrossRefGoogle Scholar
  60. Vigil-Galán, O., Courel, M., Andrade-Arvizu, J.A., Sánchez, Y., Espíndola-Rodríguez, M., Saucedo, E., et al.: Processing pathways of Cu2Zn(SnGe)Se4 based solar cells: the role of CdS buffer layer. Mater. Sci. Semicond. Process. 67, 14–19 (2017)CrossRefGoogle Scholar
  61. Wu, X., Lai, F., Lin, L., Lv, J., Zhuang, B., Yan, Q., et al.: Optical inhomogeneity of ZnS films deposited by thermal evaporation. Appl. Surf. Sci. 254, 6455–6460 (2008)ADSCrossRefGoogle Scholar
  62. Zhang, J., Feng, J., Feng, Y., Liao, J., Xue, S., Shao, L., et al.: Fabrication of Zn(O, S) thin films by ozone assisted photochemical deposition and its potential applications as buffer layers in kesterite-based thin film solar cells. Thin Solid Films 670, 80–85 (2019)ADSCrossRefGoogle Scholar
  63. Zhou, L., Xue, Y., Li, J.: Study on ZnS thin films prepared by chemical bath deposition. J. Environ. Sci. 21, S76–S79 (2009)CrossRefGoogle Scholar
  64. Zhuk, S., Kushwaha, A., Wong, T.K.S., Masudy-Panah, S., Smirnov, A., Dalapati, G.K.: Critical review on sputter-deposited Cu2ZnSnS4 (CZTS) based thin film photovoltaic technology focusing on device architecture and absorber quality on the solar cells performance. Sol. Energy Mater. Sol. Cells 171, 239–252 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Photovoltaic and Renewable Energy EngineeringUniversity of New South WalesSydneyAustralia
  2. 2.Institute of Sustainable EnergyUniversiti Tenaga Nasional (@The National Energy University)KajangMalaysia
  3. 3.INTEGRA, Faculty of Engineering and Built EnvironmentThe National University of MalaysiaBangiMalaysia
  4. 4.School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia

Personalised recommendations