The performance of CROW structures on detection of virus nanoparticles

  • Sajjad Heshmati
  • Kambiz AbediEmail author
  • Ghafar Darvish


Coupled resonator optical waveguide (CROW) structures were investigated as a whispering gallery mode optical resonator for biosensing applications. A single mode optical fiber taper was used to evanescently couple light into the microspheres. We have simulated the theoretical model of the crow structure with two and three microspheres. The coupled-resonator-induced transparency (CRIT) phenomenon was observed in the crow structures. In this paper, two crow structures and a single microsphere resonator are compared with each other. We have reported the high sensitivity of the crow structures compared to a single microsphere. We have demonstrated apparent shifts of CRIT transparent peak when the virus nanoparticles are placed on the surface of the microsphere. As a result, these crow structures can be used as a biosensing sensor with high sensitivity. The theoretical simulation was carried out at the operating wavelength of 1550 nm.


WGM microsphere resonator Coupled resonator optical waveguide (CROW) Coupled resonator induced transparency (CRIT) Sensitivity Virus detection 



The authors would like to thank Vahid Faramarzi for technical assistance.


  1. Armani, A.M., et al.: Label-free, single-molecule detection with optical microcavities. Science 317(5839), 783–787 (2007)ADSCrossRefGoogle Scholar
  2. Beckmann, T., et al.: Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators. Phys. Rev. Lett. 106(14), 143903 (2011)ADSCrossRefGoogle Scholar
  3. Bo, F., et al.: Vertically coupled microresonators and oscillatory mode splitting in photonic molecules. Opt. Express 23(24), 30793–30800 (2015)ADSCrossRefGoogle Scholar
  4. Brockman, J.: The Next Fifty Years: Science in the First Half of the Twenty-First Century. Vintage, New York (2002)Google Scholar
  5. Dai, L., et al.: Effects of the slot width and angular position on the mode splitting in slotted optical microdisk resonator. Photonics Res. 5(3), 194–200 (2017)CrossRefGoogle Scholar
  6. Delezoide, C., et al.: Vertically coupled polymer microracetrack resonators for label-free biochemical sensors. IEEE Photonics Technol. Lett. 24(4), 270–272 (2011)ADSCrossRefGoogle Scholar
  7. Farnesi, D., et al.: Optical frequency conversion in silica-whispering-gallery-mode microspherical resonators. Phys. Rev. Lett. 112(9), 093901 (2014)ADSCrossRefGoogle Scholar
  8. Fleischhauer, M., et al.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005)ADSCrossRefGoogle Scholar
  9. Hunt, H.K., et al.: Bioconjugation strategies for microtoroidal optical resonators. Sensors 10(10), 9317–9336 (2010)CrossRefGoogle Scholar
  10. Iqbal, M., et al.: Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation. IEEE J. Sel. Top. Quantum Electron. 16(3), 654–661 (2010)ADSCrossRefGoogle Scholar
  11. Khunnam, W., et al.: Mode-locked self-pumping and squeezing photons model in a nonlinear micro-ring resonator. Opt. Quant. Electron. 50(9), 343 (2018)CrossRefGoogle Scholar
  12. Kippenberg, T., et al.: Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93(8), 083904 (2004)ADSCrossRefGoogle Scholar
  13. Kryzhanovskaya, N., et al.: Enhanced light outcoupling in microdisk lasers via Si spherical nanoantennas. J. Appl. Phys. 124(16), 163102 (2018)ADSCrossRefGoogle Scholar
  14. Lu, T., et al.: On-chip green silica upconversion microlaser. Opt. Lett. 34(4), 482–484 (2009)ADSCrossRefGoogle Scholar
  15. Lu, T., et al.: High sensitivity nanoparticle detection using optical microcavities. Proc. Natl. Acad. Sci. 108(15), 5976–5979 (2011)ADSCrossRefGoogle Scholar
  16. Marquardt, C., et al.: Nonlinear optics in crystalline whispering gallery resonators. Opt. Photonics News 24(7), 38–45 (2013)ADSCrossRefGoogle Scholar
  17. Matsko, A.B., Ilchenko, V.S.: Optical resonators with whispering gallery modes I: basics. IEEE J. Sel. Top. Quantum Electron. 12(3), 3–14 (2006)ADSCrossRefGoogle Scholar
  18. Qian, K., et al.: Coupled-resonator-induced transparency in two microspheres as the element of angular velocity sensing. Chin. Phys. B 25(11), 114209 (2016)ADSCrossRefGoogle Scholar
  19. Righini, G., et al.: Whispering gallery mode microresonators: fundamentals and applications. Rivista del Nuovo Cimento 34(7), 435–488 (2011)Google Scholar
  20. Sandoghdar, V., et al.: Very low threshold whispering-gallery-mode microsphere laser. Phys. Rev. A 54(3), R1777 (1996)ADSCrossRefGoogle Scholar
  21. Smith, D.D., et al.: Coupled-resonator-induced transparency. Phys. Rev. A 69(6), 063804 (2004)ADSCrossRefGoogle Scholar
  22. Smith, D.D., et al.: Coupled-resonator-induced transparency in a fiber system. Opt. Commun. 264(1), 163–168 (2006)ADSCrossRefGoogle Scholar
  23. Toncelli, A., et al.: Mechanical oscillations in lasing microspheres. J. Appl. Phys. 122(5), 053101 (2017)ADSCrossRefGoogle Scholar
  24. Vollmer, F., et al.: Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. 105(52), 20701–20704 (2008)ADSCrossRefGoogle Scholar
  25. Wiersig, J.: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84(6), 063828 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Faculty of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations