Performance enhancement of UV quantum well light emitting diode through structure optimization

  • Shameem Ahmad
  • M. A. Raushan
  • Himanshu Gupta
  • Sandhya Kattayat
  • Shalendra Kumar
  • Saurabh Dalela
  • P. A. AlviEmail author
  • M. J. Siddiqui


In this paper, an extensive study is carried out via theoretical simulation to determine the electrical and optical characteristics of AlGaN based multi-quantum well near-ultra violet light emitting diodes (MQW-UV-LED) for the emission wavelength of 353 nm. The structure and characteristics of epitaxial layers used in UV-LEDs play a significant role in the performance of the device. We have studied dependence of device output characteristics on its layer structure and optimized the structure properties to improve the performance of the device. During the optimization process, thickness of quantum well layers, thickness of barrier layers, composition of electron blocking layer (EBL) and composition of barrier layer have been changed to their optimal values. In order to calculate the wavefunction, carrier densities, and discrete energy levels within the quantum well, a 6 × 6 Kohn–Luttinger Hamiltonian has been solved. A final structure with optimized values has been proposed in the end. The optimal values for quantum well thickness and barrier thickness are found to be 3.5 nm and 6 nm respectively. Optimum values from aluminium concentration in EBL and barriers are found to be 40% and 22% respectively. The output characteristics of the final device have been simulated and results are demonstrated. The performance of final device for varying temperature have also been simulated and displayed. The results achieved n this work may be beneficial to the entire opto-electronics community.


UV-LED Efficiency droop Phosphor-less LEDs EBL LED simulations GaN LED 



Shameem Ahmad, M. A. Raushan and M. J. siddiqui are grateful to the UGC, Govt. of India, New Delhi, for providing support under the DSA-I grant. P. A. Alvi is thankful to DST, Government of India, New Delhi for providing support under CURIE programme to Banasthali Vidyapith.


  1. Ahmad, S., Raushan, M.A., Kumar, S., Dalela, S., Siddiqui, M.J., Alvi, P.A.: Modeling and Simulation of GaN based QW LED for UV emission. Opt. Int. J. Light Electron Opt. 158, 1334–1341 (2018)CrossRefGoogle Scholar
  2. Akatsuka, Y., Iwayama, S., Takeuchi, T., Kamiyama, S., Iwaya, M., Akasaki, I.: Doping profiles in low resistive GaN tunnel junctions grown by metalorganic vapor phase epitaxy. Appl. Phys. Express 12(2), 025502 (2019)ADSCrossRefGoogle Scholar
  3. Chen, X., Yin, Y., Wang, D., Fan, G.: Investigation of AlGaN-based deep-ultraviolet light-emitting diodes with AlInGaN/AlInGaN superlattice electron blocking layer. J. Electron. Mater. 48, 2572 (2019)ADSCrossRefGoogle Scholar
  4. Chu, C., Tian, K., Che, J., Shao, H., Kou, J., Zhang, Y., Li, Y., Wang, M., Zhu, Y., Zhang, Z.-H.: On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer. Opt. Express 27, A620–A628 (2019)ADSCrossRefGoogle Scholar
  5. Denbaars, S.P., et al.: Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 61(3), 945–951 (2013)CrossRefGoogle Scholar
  6. Fraser, E.M., College, P.: Characterization of AlGaN material quality for use in deep-ultraviolet light emitting diodes abstract: introduction: procedure. In: NNIN Research Experience for Undergraduates, pp. 46–47 (2004)Google Scholar
  7. Han, S.-H., et al.: Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett. 94(2009), 231123 (2009)ADSCrossRefGoogle Scholar
  8. Hirayama, H.: Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J. Appl. Phys. 97(9), 091101 (2005)ADSCrossRefGoogle Scholar
  9. Hirayama, H., Fujikawa, S., Kamata, N.: Recent progress in AlGaN-based deep-UV LEDs. Electron. Commun. Jpn. 98(5), 1–8 (2015)CrossRefGoogle Scholar
  10. Hölz, K., Lietard, J., Somoza, M.M.: High-power 365 nm UV LED mercury arc lamp replacement for photochemistry and chemical photolithography. ACS Sustain. Chem. Eng. 5(1), 828–834 (2017)CrossRefGoogle Scholar
  11. Hou, Y., Guo, Z.: Enhancement of hole injection in deep ultraviolet light-emitting diodes using a serrated P-type layer. Opt. Commun. 433, 236 (2019)ADSCrossRefGoogle Scholar
  12. Khan, A., Asif, F., Lachab, M.: Quasi-pseudomorphic AlGaN based deep ultraviolet LEDs over sapphire substrates. In: 2015 IEEE Summer Topicals Meeting Series (SUM), pp. 5–6 (2015)Google Scholar
  13. Kozodoy, P., Xing, H., DenBaars, S.P., Mishra, U.K., Saxler, A., Perrin, R., et al.: Heavy doping effects in Mg-doped GaN. J. Appl. Phys. 87(4), 1832–1835 (2000)ADSCrossRefGoogle Scholar
  14. Lai, C.Y., Hsu, T.M.: Polarization field effect on group III-nitride semiconductors. Dissertation for the Doctoral Degree, Taiwan, China (2003)Google Scholar
  15. Lany, S., Zunger, A.: Dual nature of acceptors in GaN and ZnO: the curious case of the shallow MgGa deep state. Appl. Phys. Lett. 96(14), 2008–2011 (2010)CrossRefGoogle Scholar
  16. Lawrence, K.S.: United nations environment programme. In: Ritzer, G. (ed.) The Wiley-Blackwell Encyclopedia of Globalization, September 2013. Wiley-Blackwell, Chichester (2012)Google Scholar
  17. Li, H.Y., Osman, H., Kang, C.W., Ba, T.: Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng. 111, 280–291 (2017)CrossRefGoogle Scholar
  18. Li, L., Miyachi, Y., Miyoshi, M., Egawa, T.: Ultrathin inserted AlGaN/InAlN heterojunction for performance improvement in AlGaN-based deep ultraviolet light-emitting diodes. Appl. Phys. Express 12, 011010 (2019)ADSCrossRefGoogle Scholar
  19. Mondal, R.K., Chatterjee, V., Singh, S., Islam, S.M., Pal, S.: Optimization of structure parameters for highly efficient AlGaN based deep ultraviolet light emitting diodes. Superlattices Microstruct. 112, 339–352 (2017)ADSCrossRefGoogle Scholar
  20. Mondal, R.K., Chatterjee, V., Pal, S.: Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes. Phys. E Low-Dimens. Syst. Nanostruct. 108, 233–237 (2019)ADSCrossRefGoogle Scholar
  21. Muramoto, Y., Kimura, M., Nouda, S.: Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. In: 2015 IEEE Summer Topical Meeting Series SUM 2015, pp. 13–14 (2015)Google Scholar
  22. Nakamura, S., Mukai, T., Senoh, M.: Candela class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64(13), 1687–1689 (1994)ADSCrossRefGoogle Scholar
  23. Ngo, T.H., Gil, B., Valvin, P., Damilano, B., Lekhal, K., De Mierry, P.: Internal quantum efficiency in yellow-amber light emitting AlGaN–InGaN–GaN heterostructures. Appl. Phys. Lett. 107(12), 122103 (2015)ADSCrossRefGoogle Scholar
  24. Ngo, T.H., Gil, B., Damilano, B., Lekhal, K., De Mierry, P.: Internal quantum efficiency and Auger recombination in green, yellow and red InGaN-based light emitters grown along the polar direction. Superlattices Microstruct. 103, 245–251 (2017a)ADSCrossRefGoogle Scholar
  25. Ngo, T.H., Gil, B., Damilano, B., Valvin, P., Courville, A., de Mierry, P.: Photo-induced droop in blue to red light emitting InGaN/GaN single quantum wells structures. J. Appl. Phys. 122(6), 063103 (2017b)ADSCrossRefGoogle Scholar
  26. Okumura, H., Malinverni, M., Martin, D., Grandjean, N.: High p-type GaN for advanced optoelectronic devices. In: 2016 IEEE Photonics Conference (IPC), vol. 12, pp. 661–662 (2016)Google Scholar
  27. Park, J.-S., Kim, J.K., Cho, J., Seong, T.-Y.: Review—group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency. ECS J. Solid State Sci. Technol. 6(4), Q42–Q52 (2017)CrossRefGoogle Scholar
  28. Piprek, J.: How to decide between competing efficiency droop models for GaN-based light-emitting diodes. Appl. Phys. Lett. 107(3), 031101 (2015)ADSCrossRefGoogle Scholar
  29. Rostami, A., Rasooli Saghai, H., Baghban Asghari Nejad, H.: A proposal for enhancement of optical nonlinearity in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal. Solid State Electron. 52(7), 1075–1081 (2008)ADSCrossRefGoogle Scholar
  30. Schubert, E.F.: The AlGaInN material system and ultraviolet emitters. In: Light-Emitting Diodes, pp. 222–238. Cambridge University Press, Cambridge (2006)Google Scholar
  31. Sheng Xia, C., Simon Li, Z.M., Lu, W., Hua Zhang, Z., Sheng, Y., Wen Cheng, L.: Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier. Appl. Phys. Lett. 99(23), 2009–2012 (2011)CrossRefGoogle Scholar
  32. Sheng Xia, C., Simon Li, Z.M., Sheng, Y.: On the importance of AlGaN electron blocking layer design for GaN-based light-emitting diodes. Appl. Phys. Lett. 103(23), 233505 (2013)ADSCrossRefGoogle Scholar
  33. Si, Q., Chen, H., Li, S., Lu, S., Kang, J.: Improved characteristics of AlGaN-based deep ultraviolet light-emitting diodes with superlattice p-type doping. IEEE Photonics J. 9(3), 1–7 (2017)CrossRefGoogle Scholar
  34. Taniyasu, Y., Kasu, M., Makimoto, T.: An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441(7091), 325–328 (2006)ADSCrossRefGoogle Scholar
  35. Verzellesi, G., et al.: Efficiency droop in InGaN/GaN blue light-emitting diodes: physical mechanisms and remedies. J. Appl. Phys. 114(7), 071101 (2013)ADSCrossRefGoogle Scholar
  36. Wang, C.K., et al.: Enhancement of optical performance of near-UV nitride-based light emitting diodes with different aluminum composition barrier structure. Phys. Status Solidi 211(8), 1769–1772 (2014)ADSCrossRefGoogle Scholar
  37. Winkelnkemper, M., Schliwa, A., Bimberg, D.: Interrelation of structural and electronic properties in InxGa1−x NGaN quantum dots using an eight-band k·p model. Phys. Rev. B Condens. Matter Mater. Phys. 74(15), 155322 (2006)ADSCrossRefGoogle Scholar
  38. Wu, Y.-R., Lin, Y.-Y., Huang, H.-H., Singh, J.: Electronic and optical properties of InGaN quantum dot based light emitters for solid state lighting. J. Appl. Phys. 105(1), 013117 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shameem Ahmad
    • 1
  • M. A. Raushan
    • 1
  • Himanshu Gupta
    • 2
  • Sandhya Kattayat
    • 3
  • Shalendra Kumar
    • 4
  • Saurabh Dalela
    • 5
  • P. A. Alvi
    • 2
    Email author
  • M. J. Siddiqui
    • 1
  1. 1.Department of Electronics Engineering, F/o Engineering and TechnologyAligarh Muslim UniversityAligarhIndia
  2. 2.Department of PhysicsBanasthali VidyapithBanasthaliIndia
  3. 3.Higher Colleges of TechnologyAbu DhabiUAE
  4. 4.Electronic Materials and Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied SciencesAmity University HaryanaGurgaonIndia
  5. 5.Department of Pure and Applied PhysicsUniversity of KotaKotaIndia

Personalised recommendations