Advertisement

Dynamic power and chirp measurements of amplified 19 ps pulses in traveling-wave and reflective semiconductor optical amplifiers using a linear pulse characterization technique

  • Javier Romero-Vivas
  • Lukasz Krzczanowicz
  • Aidan Meehan
  • Michael J. ConnellyEmail author
Article
  • 23 Downloads

Abstract

The dynamic chirp and power of amplified pulses in semiconductor optical amplifiers is of importance in the application of these devices as conventional amplifiers and in optical signal processing. Non-linear measurement techniques are appropriate for pulsewidths less than 5 ps but have low sensitivity for wider pulsewidths commonly present in moderate bit rate optical systems. Typical measurements of chirp and power of 20 GHz repetition rate amplified 19 ps pulsewidth pulses in traveling-wave and reflective SOAs are obtained using a linear characterization technique based on small-signal sinusoidal modulation at half the pulse stream repetition rate and post-processing of the resulting optical spectrums. The results show that the amplified pulse dynamic power and chirp can have a complex structure and thereby pulse spectrum, which in turn can influence pulse propagation in optical fiber.

Keywords

Semiconductor optical amplifier Pulse propagation Pulse characterization 

Notes

Acknowledgements

This work was supported by Science Foundation Ireland Investigator Grant 09/IN.1/I2641.

References

  1. Agrawal, G.P., Olsson, N.A.: Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25, 2297–2306 (1989)ADSCrossRefGoogle Scholar
  2. Connelly, M.J.: Wide-band steady-state numerical model and parameter extraction of a tensile-strained bulk semiconductor optical amplifier. IEEE J. Quantum Electron. 43, 47–56 (2007)ADSCrossRefGoogle Scholar
  3. Connelly, M.J.: Reflective semiconductor optical amplifier pulse propagation model. IEEE Phot. Tech. Lett. 24, 95–97 (2012)ADSCrossRefGoogle Scholar
  4. Connelly, M.J., Romero-Vivas, J., Meehan, A., Krzczanowicz, L.: Modeling of Mach–Zehnder and electroabsorption modulator pulse generators and extraction of the chirp factor. In: International Conference on Numerical Simulation of Optoelectronic Devices (2015).  https://doi.org/10.1109/NUSOD.2015.7292825
  5. Debeau, J., Kowalski, B., Boittin, R.: Simple method for the complete characterization of an optical pulse. Opt. Lett. 23, 1784–1786 (1998)ADSCrossRefGoogle Scholar
  6. Dorrer, C., Inuk, K.: Complete temporal characterization of short optical pulses by simplified chronocyclic tomography. Opt. Lett. 28, 1481–1483 (2003)ADSCrossRefGoogle Scholar
  7. Ji, Y., Li, Y., Wu, J., Wang, H., Lin, J.: Carrier-suppressed 160-GHz pulse-train generation using a dual-parallel Mach–Zehnder modulator. Opt. Eng. (2013).  https://doi.org/10.1117/1.OE.52.5.055007 CrossRefGoogle Scholar
  8. Kang, I., Dorrer, C., Zhang, L., Dinu, M., Rasras, M., Buhl, L.L., Cabot, S., Bhardwaj, A., Liu, X., Cappuzzo, M.A., Gomez, L., Wong-Foy, A., Chen, Y.F., Dutta, N.K., Patel, S.S., Neilson, D.T., Giles, C.R., Piccirilli, A., Jaques, J.: Characterization of the dynamical processes in all-optical signal processing using semiconductor optical amplifiers. IEEE J. Sel. Top. Quantum Electron. 14, 758–769 (2008)ADSCrossRefGoogle Scholar
  9. Lepetit, L., Chériaux, G., Joffre, M.: Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995)ADSCrossRefGoogle Scholar
  10. Naylor, D.A., Lermer, N., Furniss, I.: Deconvolution of Fabry–Perot spectra. Infrared Phys. (1991).  https://doi.org/10.1016/0020-0891(91)90015-8 CrossRefGoogle Scholar
  11. Thomsen, B.C., Roelens, M.A.F., Watts, R.T., Richardson, D.J.: Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications. IEEE Phot. Tech. Lett. 17, 1914–1916 (2005)ADSCrossRefGoogle Scholar
  12. Trebino, R., DeLong, K.W., Fittinghoff, D.N., Sweetser, J.N., Krumbugel, M.A., Richman, B.A., Kane, D.J.: Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997)ADSCrossRefGoogle Scholar
  13. Walmsley, I.A., Dorrer, C.: Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308–437 (2009)CrossRefGoogle Scholar
  14. Wong, V., Walmsley, I.A.: Linear filter analysis of methods for ultrashort pulse shape measurements. J. Opt. Soc. Am. B 12, 1491–1499 (1995)ADSCrossRefGoogle Scholar
  15. Wooten, E.L., Kissa, K.M., Yi-Yan, A., Murphy, E.J., Lafaw, D.A., Hallemeier, P.F., Maack, D., Attanasio, D.V., Fritz, D.J., McBrien, G.J., Bossi, D.E.: A review of Lithium Niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum. Electron. 6, 69–82 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Optical Communications Research Group, Department of Electronic and Computer EngineeringUniversity of LimerickLimerickIreland

Personalised recommendations