Advertisement

Direct digital predistortion technique for the compensation of laser chirp and fiber dispersion in long haul radio over fiber links

  • Muhammad Usman HadiEmail author
  • Jacopo Nanni
  • Jean-Luc Polleux
  • Pier Andrea Traverso
  • Giovanni Tartarini
Article
  • 50 Downloads

Abstract

Analog Radio-over-Fiber (A-RoF) communication technology constitutes a promising technique for next generation radio access networks thanks to its relatively low bandwidth requirements. Within this context, an efficient predistortion technique is proposed, which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. The radio frequency signal is firstly put in digital form through an analog to digital converter, then the predistortion operation is realized, and finally the resulting signal is put again into analog form. A comprehensive analysis on the theoretical basis of the proposed approach is presented, together with the approximations introduced, which makes it practically realizable. The improvements on the quality of the received signal due to the proposed solution are illustrated with reference to scenarios of applicative interest. The performance of proposed technique is evaluated in terms of adjacent channel leakage ratio and error vector magnitude when long term evolution signal is applied at the input.

Keywords

Radio-over-Fiber Directly modulated laser Predistortion Adjacent channel leakage ratio Error vector magnitude LTE signals 

Notes

References

  1. Alcaro, G., Visani, D., Tarlazzi, L., Faccin, P., Tartarini, G.: Distortion mechanisms originating from modal noise in radio over multimode fiber links. IEEE Trans. Microw. Theory Tech. 60(1), 185–194 (2012)CrossRefADSGoogle Scholar
  2. Betta, G., Capriglione, D., Ferrigno, L., Miele, G.: Innovative methods for the selection of bandpass sampling rate in cost-effective RF measurement instruments. Meas. J. Int. Meas. Confed. 43(8), 985–993 (2010)CrossRefGoogle Scholar
  3. Braithwaite, R.N.: Wide bandwidth adaptive digital predistortion of power amplifiers using reduced order memory correction. In: Microwave symposium digest, IEEE MTT-S international, pp. 1517–1520 (2008)Google Scholar
  4. Breyne, L., Torfs, G., Yin, X., Demeester, P., Bauwelinck, J.: Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber. IEEE Photonics Technol. Lett. 29(21), 1808–1811 (2017).  https://doi.org/10.1109/LPT.2017.2752284 CrossRefADSGoogle Scholar
  5. Fan, S., Chien, H., Hsueh, Y., Chowdhury, A., Yu, J., Chang, G.: Simultaneous transmission of wireless and wireline services using a single 60-GHz radio-over-fiber channel by coherent subcarrier modulation. IEEE Photonics Technol. Lett. 21(16), 1127–1129 (2009)CrossRefADSGoogle Scholar
  6. Forestier, S., Bouvsse, P., Quere, R., Mallet, A., Nebus, J.M., Lapierre, L.: Joint optimization of the power-aided efficiency and error vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method. IEEE Trans. Microwave Theory Tech. 52(4), 1132–1140 (2004)CrossRefADSGoogle Scholar
  7. Fuochi, F., Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G.: Digital predistortion technique for the compensation of nonlinear effects in radio over fiber links. In: 2016 IEEE 2nd international forum on research and technologies for society and industry leveraging a better tomorrow (RTSI), pp. 1–6 (2016)Google Scholar
  8. Haddad, A., Gagnaire, M.: Radio-over-Fiber (RoF) for mobile backhauling: A technical and economic comparison between analog and digitized RoF. In: International conference on optical network design modeling, pp. 132–137 (2014)Google Scholar
  9. Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, J.L.: Experimental evaluation of digital predistortion for VCSEL-SSMF-based Radio-over-Fiber link, In: 2018 International topical meeting on microwave photonics (MWP), Toulouse, France, pp. 1–4 (2018)Google Scholar
  10. Hadi, M.U., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, J.L.: Digital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber links. IEEE Microw. Wirel. Compon. Lett. 29(2), 155–157 (2019a)CrossRefGoogle Scholar
  11. Hadi, M.U., Jung, H., Ghaffar, S., Traverso, P.A., Tartarini, G.: Optimized digital radio over fiber system for medium range communication, Optics Communications, ISSN 0030-4018,  https://doi.org/10.1016/j.optcom.2019.03.037, 443, 177–185 (2019b)CrossRefADSGoogle Scholar
  12. Hadi, M.U., Jung, H., Traverso, P.A., Tartarini, G.: Digital radio frequency transport over optical fiber for 5G fronthaul links. J. Opt. Commun. (2019c).  https://doi.org/10.1515/joc-2019-0051 CrossRefGoogle Scholar
  13. Hadi, M.U., Aslam, N., Jung, H.: Performance appraisal of sigma delta modulated radio over fiber system. J. Opt. Commun. (2019d).  https://doi.org/10.1515/joc-2018-0227 CrossRefGoogle Scholar
  14. Hadi, M.U., Hadi, M.U., Aslam, N., Ali, R., Khurshid, K., Traverso, P.A., Tartarini, G.: Experimental demonstration of MASH based sigma delta radio over fiber system for 5G C-RAN downlink. J. Opt. Commun. (2019e).  https://doi.org/10.1515/joc-2019-0011 CrossRefGoogle Scholar
  15. Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, J.L.: Linearity improvement of VCSELs based radio over fiber systems utilizing digital predistortion. Adv. Sci. Technol. Eng. Syst. J. 4(4), 156–163 (2019f)Google Scholar
  16. Hekkala, A., Hiivala, M., Lasanen, M., Perttu, J., Vieira, L.C., Gomes, Nkansah, A.: Predistortion of radio over fiber links: algorithms, implementation, and measurements. IEEE Trans. Circuits Syst. I Regul. Pap. 59(3), 664–672 (2012)MathSciNetCrossRefGoogle Scholar
  17. Huang, H.T., Lin, C.T., Chiang, S.C., Lin, B.J., Shih, P.T.B., Ng’oma, A.: Volterra nonlinearity compensator for I/Q imbalanced mm-wave OFDM RoF systems. In: 2015 International topical meeting on microwave photonics (MWP). pp. 1–4 (2015)Google Scholar
  18. Kabonzo, F.M., Dilshad, M.U.: Impact of radio over fiber technology for integrated 5G front and back-haul applications. In: 2017 IEEE 2nd advanced information technology, electronic and automation control conference (IAEAC), Chongqing, pp. 1077–1081 (2017)Google Scholar
  19. Koch, T.L., Linke, R.A., Hanzo, L.: Effect of nonlinear gain reduction on semiconductor laser wavelength chirping. Am. Inst. Phys. Appl. Phys. Lett. 48, 613–615 (1986)CrossRefADSGoogle Scholar
  20. Liu, Y., Yan, J.J., Dabag, H.T., Asbeck, P.M.: Novel technique for wideband digital predistortion of power amplifiers with an under-sampling ADC. IEEE Trans. Microw. Theory Tech. 62(11), 2604–2617 (2014)CrossRefADSGoogle Scholar
  21. Mateo, C., Carro, P.L., García-Dúcar, P., De Mingo, J., Salinas, I.: Radio-over-fiber linearization with optimized genetic algorithm CPWL model. Opt. Express 25(4), 3694–3708 (2017)CrossRefADSGoogle Scholar
  22. Meslener, G.J.: Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE J. Quantum Electron. QE 20, 1208–1216 (1984)CrossRefADSGoogle Scholar
  23. Morant, M., Llorente, P.: Performance analysis of multiple radio-access provision in a multicore-fibre optical fronthaul. Opt. Commun. 436, 161–167 (2019)CrossRefADSGoogle Scholar
  24. Morgan, D., Ma, Z., Kim, J., Zierdt, M., Pastalan, J.: A generalized memory polynomial model for digital predistortion of rf power amplifiers. IEEE Trans. Signal Process. 54(10), 3852–3860 (2006)CrossRefADSGoogle Scholar
  25. Nanni, J., Barbiroli, M., Fuschini, F., Masotti, D., Polleux, J.-L., Algani, C., Tartarini, G.: Chirp evaluation of semiconductor DFB lasers through a simple Interferometry-based (IB) technique. Appl. Opt. (OSA) 55(28), 7788–7795 (2016)CrossRefADSGoogle Scholar
  26. Nanni, J., Polleux, J., Algani, C., Rusticelli, S., Perini, F., Tartarini, G.: VCSEL-based radio-over-G652 fiber system for short-/medium-range MFH solutions. J. Lightwave Technol. 36(19), 4430–4437 (2018)CrossRefADSGoogle Scholar
  27. Nirmalathas, A., Gamage, P.A., Lim, C., Novak, D., Waterhouse, R., Yang, Y.: Digitized RF transmission over fiber. IEEE Microw. Mag. 10(4), 75–81 (2009)CrossRefGoogle Scholar
  28. Roselli, L., Borgioni, V., Zepparelli, F., Ambrosi, F., Comez, M., Faccin, P., Casini, A.: Analog laser predistortion for multiservice radio-over-fiber systems. IEEE J. Lightwave Technol. 37(5), 1211–1223 (2003)CrossRefADSGoogle Scholar
  29. Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, BER and SNR as performance metrics. In: 2006 International conference on electrical and computer engineering, Dhaka, pp. 408–411 (2006)Google Scholar
  30. Shi, Y., Visani, D., Okonkwo, C.M.,; Yang, H., van den Boom, H.P.A., Tartarini, G., Tangdiongga, E., Koonen, A.M.J.: First demonstration of HD video distribution over large-core POF employing UWB for in-home networks. In: Optical fiber communication conference and exposition and the national fiber optic engineers conference, pp. 1–3, 2011. CA, Los Angeles (2011)Google Scholar
  31. Tartarini, G., Faccin, P.: Efficient characterization of harmonic and intermodulation distortion effects in dispersive radio over fiber systems with direct laser modulation. Microw. Opt. Technol. Lett. 46(2), 114–117 (2005)CrossRefGoogle Scholar
  32. Third Generation Partnership Project: Technical specification group radio access network; evolved universal terrestrial radio access (E-UTRA); physical channel and modulation (3GPP TS 36.211 version 13.2.0 Release 13) (2018)Google Scholar
  33. Thomas, V.A., El-Hajjar, M., Hanzo, L.: Performance improvement and cost reduction techniques for radio over fiber communications. IEEE Commun. Surv. Tutor. 17(2), 627–670 (2015)CrossRefGoogle Scholar
  34. Vieira, L.C., Gomes, N.J., Nkansah, A., Van Dijk, F.:Behavioral modeling of radio-over-fiber links using memory polynomials. In: 2010 IEEE international topical meeting on microwave photonics, Montreal, QC, pp. 85–88 (2010)Google Scholar
  35. Villafranca, A., Lasobras, J., Garces, I.: Precise characterization of the frequency chirp in directly modulated DFB lasers. In: Spanish conference on electron devices, pp. 173–176 (2007)Google Scholar
  36. Visani, D., Tartarini, G., Tarlazzi, L., Faccin, P.: Transmission of UMTS and WIMAX signals over cost-effective radio over fiber systems. IEEE Microw. Wirel. Compon. Lett. 19(12), 831–833 (2009)CrossRefGoogle Scholar
  37. Visani, D., Okonkwo, C.M., Shi, Y., Yang, H., van den Boom, H.P.A., Tartarini, G., Tangdiongga, E., Koonen, A.M.J.: 3x2N-QAM constellation formats for DMT over 1-mm core diameter plastic optical fiber. IEEE Photonics Technol. Lett. 23, 768–770 (2011)CrossRefADSGoogle Scholar
  38. Wake, D., Nkansah, A., Gomes, N.J.: Radio over fiber link design for next generation wireless systems. IEEE/OSA J. Lightwave Technol. 28(16), 2456–2464 (2010)CrossRefADSGoogle Scholar
  39. Wei, C.C.: Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection. Opt. Lett. 36, 151–153 (2011)CrossRefADSGoogle Scholar
  40. Zhu, R., Zhang, X.: Broadband predistortion circuit design for electro-absorption modulator in radio over fiber system. In: Proceedings of the optical fiber communications conference and exhibition (OFC), San Francisco, CA, USA (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Information EngineeringUniversity of BolognaBolognaItaly
  2. 2.Université Paris-Est— ESYCOM (EA2552)— ESIEE Paris, UPEM, Le CnamNoisy-le-GrandFrance

Personalised recommendations