Advertisement

An iris biometric protection scheme using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi resolution wavelet domain

  • Pankaj RakhejaEmail author
  • Rekha Vig
  • Phool Singh
  • Ravi Kumar
Article
  • 20 Downloads

Abstract

In this paper, a hybrid iris biometric protection scheme using 4D hyperchaotic system by means of coherent superposition and modified equal modulus decomposition in hybrid multi-resolution wavelet domain is proposed. The 4D hyperchaotic framework is employed for producing the permutation keystream for pixel swap-over mechanism. The hybrid multi-resolution is produced by means of Kronecker product of Walsh transform and fractional Fourier transform of different orders. Fractional orders of the hybrid multiresolution wavelet along with the parameters and initial conditions of the 4D hyperchaotic framework, later fill in as additional keys, thus enhancing the key space of the proposed mechanism. The proposed scheme has nonlinear characteristics and has high robustness against brute-force attack attributable to its enormous key-space. Numerical simulations have been carried out on grayscale images to prove the authenticity and efficacy of the proposed cryptosystem. The functioning of the proposed cryptosystem is investigated against various attacks including special attack. Outcomes display that the proposed iris template protection scheme not only has higher robustness against noise attack but is also unassailable to the iterative transform-based attacks.

Keywords

Biometric templates 4D hyperchaotic framework Equal modulus decomposition Fractional orders Hybrid multi-resolution wavelet 

Notes

References

  1. Abuturab, M.R.: Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform. J. Opt. Soc. Am. A JOSAA 32, 1811–1820 (2015).  https://doi.org/10.1364/JOSAA.32.001811 ADSCrossRefGoogle Scholar
  2. Barfungpa, S.P., Abuturab, M.R.: Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Opt. Quant. Electron. 48, 520 (2016).  https://doi.org/10.1007/s11082-016-0786-5 CrossRefGoogle Scholar
  3. Biryukov, A.: Known plaintext attack. In: van Tilborg, H.C.A. (ed.) Encyclopedia of Cryptography and Security, pp. 342–343. Springer, Boston (2005).  https://doi.org/10.1007/0-387-23483-7_224 CrossRefGoogle Scholar
  4. Biryukov, A.: Chosen Ciphertext Attack: Encyclopedia of Cryptography and Security, p. 205. Springer, Boston (2011a).  https://doi.org/10.1007/978-1-4419-5906-5_556 CrossRefGoogle Scholar
  5. Biryukov, A.: Known Plaintext Attack: Encyclopedia of Cryptography and Security, pp. 704–705. Springer, Boston (2011b).  https://doi.org/10.1007/978-1-4419-5906-5_588 CrossRefGoogle Scholar
  6. Cai, J., Shen, X.: Modified optical asymmetric image cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Laser Technol. 95, 105–112 (2017).  https://doi.org/10.1016/j.optlastec.2017.04.018 ADSCrossRefGoogle Scholar
  7. Cai, J., Shen, X., Lei, M., Lin, C., Dou, S.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt. Lett. OL 40, 475–478 (2015).  https://doi.org/10.1364/OL.40.000475 ADSCrossRefGoogle Scholar
  8. Candan, C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48, 1329–1337 (2000).  https://doi.org/10.1109/78.839980 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Chen, L., Zhao, D.: Optical image encryption with Hartley transforms. Opt. Lett. OL 31, 3438–3440 (2006).  https://doi.org/10.1364/OL.31.003438 ADSCrossRefGoogle Scholar
  10. Chen, H., Tanougast, C., Liu, Z., Sieler, L.: Asymmetric optical cryptosystem for color image based on equal modulus decomposition in gyrator transform domains. Opt. Lasers Eng. 93, 1–8 (2017).  https://doi.org/10.1016/j.optlaseng.2017.01.005 CrossRefGoogle Scholar
  11. Cheng, X.C., Cai, L.Z., Wang, Y.R., Meng, X.F., Zhang, H., Xu, X.F., et al.: Security enhancement of double-random phase encryption by amplitude modulation. Opt. Lett. OL 33, 1575–1577 (2008).  https://doi.org/10.1364/OL.33.001575 ADSCrossRefGoogle Scholar
  12. Deng, X.: Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt. Lett. OL 40, 3913 (2015).  https://doi.org/10.1364/OL.40.003913 ADSCrossRefGoogle Scholar
  13. Deng, X., Zhao, D.: Multiple-image encryption using phase retrieve algorithm and intermodulation in Fourier domain. Opt. Laser Technol. 44, 374–377 (2012).  https://doi.org/10.1016/j.optlastec.2011.07.019 ADSCrossRefGoogle Scholar
  14. Dickinson, B., Steiglitz, K.: Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 30, 25–31 (1982).  https://doi.org/10.1109/TASSP.1982.1163843 MathSciNetCrossRefzbMATHGoogle Scholar
  15. Fatima, A., Mehra, I., Nishchal, N.K.: Optical image encryption using equal modulus decomposition and multiple diffractive imaging. J. Opt. 18, 085701 (2016).  https://doi.org/10.1088/2040-8978/18/8/085701 ADSCrossRefGoogle Scholar
  16. Frauel, Y., Castro, A., Naughton, T.J., Javidi, B.: Resistance of the double random phase encryption against various attacks. Opt. Express OE 15, 10253–10265 (2007).  https://doi.org/10.1364/OE.15.010253 ADSCrossRefGoogle Scholar
  17. Fu, C., Zhang, G., Zhu, M., Chen, Z., Lei, W.: A new chaos-based color image encryption scheme with an efficient substitution keystream generation strategy. Secur. Commun. Netw. (2018).  https://doi.org/10.1155/2018/2708532 CrossRefGoogle Scholar
  18. Ge, M., Ye, R.: A novel image encryption scheme based on 3D bit matrix and chaotic map with Markov properties. Egypt. Inform. J. 20, 45–54 (2018).  https://doi.org/10.1016/j.eij.2018.10.001 CrossRefGoogle Scholar
  19. Gopinathan, U., Monaghan, D.S., Naughton, T.J., Sheridan, J.T.: A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt. Express OE 14, 3181–3186 (2006).  https://doi.org/10.1364/OE.14.003181 ADSCrossRefGoogle Scholar
  20. Hennelly, B., Sheridan, J.T.: Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett. OL 28, 269–271 (2003).  https://doi.org/10.1364/OL.28.000269 ADSCrossRefGoogle Scholar
  21. Kekre, H.B., Sarode, T.K., Vig, R.: A new multi-resolution hybrid wavelet for analysis and image compression. Int. J. Electron. 102, 2108–2126 (2015).  https://doi.org/10.1080/00207217.2015.1020882 CrossRefGoogle Scholar
  22. Liu, S., Mi, Q., Zhu, B.: Optical image encryption with multistage and multichannel fractional Fourier-domain filtering. Opt. Lett. OL 26, 1242–1244 (2001).  https://doi.org/10.1364/OL.26.001242 ADSCrossRefGoogle Scholar
  23. Liu, Z., Chen, H., Liu, T., Li, P., Xu, L., Dai, J., et al.: Image encryption by using gyrator transform and Arnold transform. JEI JEIME5 20, 013020 (2011).  https://doi.org/10.1117/1.3557790 CrossRefGoogle Scholar
  24. Lohmann, A.W.: Image rotation, Wigner rotation, and the fractional Fourier transform. J. Opt. Soc. Am. A JOSAA 10, 2181–2186 (1993).  https://doi.org/10.1364/JOSAA.10.002181 ADSCrossRefGoogle Scholar
  25. Mehra, I., Nishchal, N.K.: Image fusion using wavelet transform and its application to asymmetric cryptosystem and hiding. Opt. Express OE 22, 5474–5482 (2014).  https://doi.org/10.1364/OE.22.005474 ADSCrossRefGoogle Scholar
  26. Nishchal, K., Joseph, J., Singh, K.: Securing information using fractional Fourier transform in digital holography. Opt. Commun. 235, 253–259 (2004).  https://doi.org/10.1016/j.optcom.2004.02.052 ADSCrossRefGoogle Scholar
  27. Peng, X., Zhang, P., Wei, H., Yu, B.: Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. OL 31, 1044–1046 (2006).  https://doi.org/10.1364/OL.31.001044 ADSCrossRefGoogle Scholar
  28. Poon, T-C., Liu, J-P.: Introduction to Modern Digital Holography by Ting-Chung Poon. Cambridge Core 2014.  https://doi.org/10.1017/cbo9781139061346
  29. Qin, W.: Universal and special keys based on phase-truncated Fourier transform. Opt. Eng. 50, 080501 (2011).  https://doi.org/10.1117/1.3607421 ADSCrossRefGoogle Scholar
  30. Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. OL 35, 118–120 (2010).  https://doi.org/10.1364/OL.35.000118 ADSCrossRefGoogle Scholar
  31. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform. Appl. Opt. AO 52, 871–878 (2013a).  https://doi.org/10.1364/AO.52.000871 ADSCrossRefGoogle Scholar
  32. Rajput, S.K., Nishchal, N.K.: Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem. Opt. Commun. 309, 231–235 (2013b).  https://doi.org/10.1016/j.optcom.2013.06.036 ADSCrossRefGoogle Scholar
  33. Ramaiah, N.P., Kumar, A.: Towards more accurate iris recognition using cross-spectral matching. IEEE Trans. Image Process. 26, 208–221 (2017)ADSMathSciNetCrossRefGoogle Scholar
  34. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. OL 20, 767–769 (1995).  https://doi.org/10.1364/OL.20.000767 ADSCrossRefGoogle Scholar
  35. Sharma, N., Saini, I., Yadav, A., Singh, P.: Phase-image encryption based on 3D-lorenz chaotic system and double random phase encoding. 3D Res. 8, 39 (2017).  https://doi.org/10.1007/s13319-017-0149-4 CrossRefGoogle Scholar
  36. Singh, H.: Hybrid structured phase mask in frequency plane for optical double image encryption in gyrator transform domain. J. Mod. Opt. 65, 2065–2078 (2018).  https://doi.org/10.1080/09500340.2018.1496286 ADSMathSciNetCrossRefGoogle Scholar
  37. Singh, H., Yadav, A.K., Vashisth, S., Singh, K.: Double phase-image encryption using gyrator transforms, and structured phase mask in the frequency plane. Opt. Lasers Eng. 67, 145–156 (2015).  https://doi.org/10.1016/j.optlaseng.2014.10.011 CrossRefGoogle Scholar
  38. Singh, P., Yadav, A.K., Singh, K., Saini, I.: Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition. AIP Conf. Proc. 1802, 020017 (2017a).  https://doi.org/10.1063/1.4973267 CrossRefGoogle Scholar
  39. Singh, P., Saini, I., Yadav, A.K.: Analysis of Lorenz-chaos and exclusive-OR based image encryption scheme. Int. J. Soc. Comput. Cyber-Phys. Syst. 2, 59–72 (2017b).  https://doi.org/10.1504/IJSCCPS.2017.10009739 CrossRefGoogle Scholar
  40. Situ, G., Zhang, J.: Double random-phase encoding in the Fresnel domain. Opt. Lett. OL 29, 1584–1586 (2004).  https://doi.org/10.1364/OL.29.001584 ADSCrossRefGoogle Scholar
  41. Sui, L., Gao, B.: Single-channel color image encryption based on iterative fractional Fourier transform and chaos. Opt. Laser Technol. 48, 117–127 (2013).  https://doi.org/10.1016/j.optlastec.2012.10.016 ADSCrossRefGoogle Scholar
  42. Unnikrishnan, G., Joseph, J., Singh, K.: Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt. Lett. OL 25, 887–889 (2000).  https://doi.org/10.1364/OL.25.000887 ADSCrossRefGoogle Scholar
  43. Vashisth, S., Singh, H., Yadav, A.K., Singh, K.: Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik 125, 5309–5315 (2014).  https://doi.org/10.1016/j.ijleo.2014.06.068 ADSCrossRefGoogle Scholar
  44. Wang, X., Zhao, D.: Security enhancement of a phase-truncation based image encryption algorithm. Appl. Opt. 50, 6645–6651 (2011)ADSCrossRefGoogle Scholar
  45. Wang, X., Zhao, D.: A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Commun. 285, 1078–1081 (2012).  https://doi.org/10.1016/j.optcom.2011.12.017 ADSCrossRefGoogle Scholar
  46. Wang, X., Zhao, D.: Simultaneous nonlinear encryption of grayscale and color images based on phase-truncated fractional Fourier transform and optical superposition principle. Appl. Opt. 52, 6170–6178 (2013a)ADSCrossRefGoogle Scholar
  47. Wang, X., Zhao, D.: Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier-transform-based encryption using a random amplitude mask. Opt. Lett OL 38, 3684–3686 (2013b).  https://doi.org/10.1364/OL.38.003684 ADSCrossRefGoogle Scholar
  48. Wang, X., Chen, Y., Dai, C., Zhao, D.: Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. AO 53, 208–213 (2014).  https://doi.org/10.1364/AO.53.000208 ADSCrossRefGoogle Scholar
  49. Wang, Y., Quan, C., Tay, C.J.: Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform. Appl. Opt. AO 54, 6874–6881 (2015).  https://doi.org/10.1364/AO.54.006874 ADSCrossRefGoogle Scholar
  50. Zhou, N., Wang, Y., Gong, L.: Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284, 3234–3242 (2011).  https://doi.org/10.1016/j.optcom.2011.02.065 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EECEThe NorthCap UniversityGurugramIndia
  2. 2.Department of Mathematics, SOETCentral University of HaryanaMahendergarhIndia
  3. 3.Department of Applied PhysicsIndian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations