Advertisement

Dyakonov surface waves at the interface of nanocomposites with spherical and ellipsoidal inclusions

  • I. V. FedorinEmail author
Article
  • 30 Downloads

Abstract

The dispersion properties of different types of surface electromagnetic waves which are supported by the interface of two nanocomposite materials with inclusions of different shape are studied theoretically and numerically. Both nanocomposites are made of doped n-type semiconductor inclusions which are evenly distributed in a transparent dielectric matrix. First nanocomposite contains semiconductor inclusions of spherical shape and can be represented as isotropic material with scalar effective dielectric permittivity. Second nanocomposite contains semiconductor inclusions of ellipsoidal shape and can be modeled as a uniaxial anisotropic crystal with two different principal effective permittivity components. Influence of physical and geometrical parameters of the nanocomposites on dispersion properties of surface waves is studied. It is shown that when dissipations in the semiconductor inclusions are taken into account the angular spectrum of Dyakonov surface wave existence becomes wider, and several dispersion curves of surface modes can simultaneously exist.

Keywords

Surface plasmon polaritons Dyakonov surface waves Nanocomposites Maxwell Garnett model 

Notes

Compliance with ethical standards

Conflict of interest

Author has no conflict of interest.

References

  1. Alfaramawi, K., Alzamil, M.A.: Temperature-dependent scattering processes of n-type indium antimonide. Optoelectron. Adv. Mater. 3, 569–573 (2009)Google Scholar
  2. Baibak, V.V., Fedorin, I.V., Bulgakov, A.A.: Surface electromagnetic waves in finite semiconductor-dielectric periodic structure in an external magnetic field. Prog. Electromagn. Res. M 32, 229–244 (2013).  https://doi.org/10.2528/PIERM13072310 CrossRefGoogle Scholar
  3. Bikbaev, R.G., Vetrov, S.Y., Timofeev, I.V.: The optical Tamm states at the interface between a photonic crystal and nanoporous silver. J. Opt. 19, 015104 (2017).  https://doi.org/10.1088/2040-8986/19/1/015104 CrossRefADSGoogle Scholar
  4. Boltasseva, A., Bozhevolnyi, S.I., Nikolajsen, T., Leosson, K.: Compact Bragg gratings for long-range surface plasmon polaritons. J. Lightw. Technol. 24, 912–918 (2006).  https://doi.org/10.1109/JLT.2005.862470 CrossRefADSGoogle Scholar
  5. Bulgakov, A.A., Fedorin, I.V.: Electrodynamic properties of a thin-film periodic structure in an external magnetic field. Tech. Phys. 56, 510–514 (2014).  https://doi.org/10.1134/S1063784211040098 CrossRefGoogle Scholar
  6. Chiadini, F., Fiumara, V., Mackay, T.G., Scaglione, A., Lakhtakia, A.: Temperature-mediated transition from Dyakonov–Tamm surface waves to surface-plasmon-polariton waves. J. Opt. 19(8), 085002 (2017).  https://doi.org/10.1088/2040-8986/aa796b CrossRefADSGoogle Scholar
  7. Crasovan, L.C., Takayama, O., Artigas, D., Johansen, S.K., Mihalache, D., Torner, L.: Enhanced localization of Dyakonov-like surface waves in left-handed materials. Phys. Rev. B 74(15), 155120 (2006).  https://doi.org/10.1103/PhysRevB.74.155120 CrossRefADSGoogle Scholar
  8. Dyakonov, M.I.: New type of electromagnetic wave propagating at an interface. Sov. Phys. JETP 67, 714–716 (1988)Google Scholar
  9. Fedorin, I.: Polarization transformation by a hyperbolic metamaterial on a metal substrate. Prog. Electromagn. Res. B 67, 17–30 (2016).  https://doi.org/10.2528/PIERB16011702 CrossRefGoogle Scholar
  10. Fedorin, I.: Surface polaritons and Dyakonov-like surface waves in an isotropic-anisotropic nanocomposite system. J. Phys. Conf. Ser. 1092, 012033 (2018a).  https://doi.org/10.1088/1742-6596/1092/1/012033 CrossRefGoogle Scholar
  11. Fedorin, I.: Influence of dissipations in the semiconductor layers on the properties of hybrid surface waves at the interface between porous nanocomposite and hypercrystal. In: 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) Odessa, Ukraine, Sept 4–7, 2018, pp. 230–233. Odessa, Ukraine (2018b).  https://doi.org/10.1109/UWBUSIS.2018.8520040
  12. Fedorin, I.V., Baibak, V.V., Bulgakov, A.A.: Influence of an external magnetic field on the dispersion properties of surface waves in the 1-d periodic biaxial metamaterial. Eur. Phys. J. Appl. Phys. 66(2), 20502 (2014).  https://doi.org/10.1051/epjap/2014140077 CrossRefADSGoogle Scholar
  13. Fedorin, I., Khrypunova, A., Khrypunova, I.: Electromagnetic surface waves guided by a plane interface between a porous nanocomposite and a hypercrystal. Optik 172, 596–606 (2018).  https://doi.org/10.1016/j.ijleo.2018.07.057 CrossRefADSGoogle Scholar
  14. Geyer, R.G., Mantese, J., Baker-Jarvis, J.: Effective medium theory for ferrite-loaded materials. Technical Note (NIST TN) – 1371 (1994)Google Scholar
  15. Golovan, L.A., Timoshenko, VYu., Kashkarov, P.K.: Optical properties of porous-system-based nanocomposites. Phys. Usp. 50, 595–612 (2007).  https://doi.org/10.1070/PU2007v050n06ABEH006257 CrossRefADSGoogle Scholar
  16. Jylhä, L.: Modeling of electrical properties of composites. Dissertation, TKK Radio Science and Engineering Publications Espoo (2008)Google Scholar
  17. Khurgin, J.B.: How to deal with the loss in plasmonics and metamaterials. Nat. Nanotechnol. 10, 2–6 (2015).  https://doi.org/10.1038/nnano.2014.310 CrossRefADSGoogle Scholar
  18. Khurgin, J.B., Boltasseva, A.: Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37, 768–779 (2012).  https://doi.org/10.1557/mrs.2012.173 CrossRefGoogle Scholar
  19. Kogan, A., Shavit, R.: Maxwell Garnett theory limitations in the analysis of bi-anisotropic composites. IET Microw. Antenna Propag. J. 13, 105–111 (2018).  https://doi.org/10.1049/iet-map.2018.5437 CrossRefGoogle Scholar
  20. Koledintseva, M.Y., DuBroff, R.E., Schwartz, R.W.: A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies. Prog. Electromagn. Res. 63, 223–242 (2006).  https://doi.org/10.2528/PIER06052601 CrossRefGoogle Scholar
  21. Koledintseva, M.Y., DuBroff, R.E., Schwartz, R.W.: Maxwell Garnett rule for dielectric mixtures with statistically distributed orientations of inclusions. Prog. Electromagn. Res. 99, 131–148 (2009).  https://doi.org/10.2528/PIER09091605 CrossRefGoogle Scholar
  22. Levy, O., Cherkaev, E.: Effective medium approximations for anisotropic composites with arbitrary component orientation. J. Appl. Phys. 114, 164102 (2013).  https://doi.org/10.1063/1.4826616 CrossRefADSGoogle Scholar
  23. Levy, O., Stroud, D.: Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys. Rev. B 56, 8035–8046 (1997).  https://doi.org/10.1103/PhysRevB.56.8035 CrossRefADSGoogle Scholar
  24. Mackay, T.G., Lakhtakia, A.: Temperature-mediated transition from Dyakonov surface waves to surface-plasmon-polariton waves. IEEE Photon. J. 8, 1–13 (2016).  https://doi.org/10.1109/JPHOT.2016.2611700 CrossRefGoogle Scholar
  25. Mackay, T.G., Lakhtakia, A.: Simultaneous existence of amplified and attenuated Dyakonov surface waves. Opt. Commun. 427, 175–179 (2018).  https://doi.org/10.1016/j.optcom.2018.06.050 CrossRefADSGoogle Scholar
  26. Madelung, O., Rossler, U., Schulz, M.: Indium Antimonide (InSb). Springer, Berlin, Electron Mobility (2002).  https://doi.org/10.1007/10832182_388 CrossRefGoogle Scholar
  27. Markel, V.A.: Introduction to the Maxwell Garnett approximation: tutorial. J. Opt. Soc. Am. A 33, 1244–1256 (2016).  https://doi.org/10.1364/JOSAA.33.001244 CrossRefADSGoogle Scholar
  28. Mathur, P.C., Kataria, N.D., Jain, S., Sharma, V.: Electron mobility in n-InSb from 77 to 300K. J. Phys. C Solid State Phys. 9, L89–L91 (1975).  https://doi.org/10.1088/0022-3719/9/4/002 CrossRefADSGoogle Scholar
  29. Nadal, E., Barros, N., Glénat, H., Kachakachi, H.: Optical properties of complex plasmonic materials studied with extended effective medium theories combined with rigorous coupled wave analysis. Materials (Basel) 11(3), E351 (2018).  https://doi.org/10.3390/ma11030351 CrossRefADSGoogle Scholar
  30. Nikitchenko, A.I., Azovtsev, A.V., Pertsev, N.A.: Dielectric properties of ferroelectric nanocomposites: effects of thermal stresses and filler shape anisotropy. J. Phys. Condens. Matter 30(43), 435301 (2018).  https://doi.org/10.1088/1361-648X/aadfc1 CrossRefADSGoogle Scholar
  31. Popov, V., Lavrinenko, A.V., Novitsky, A.: Surface waves on multilayer hyperbolic metamaterials: operator approach to effective medium approximation. Phys. Rev. B 97(12), 125428 (2018).  https://doi.org/10.1103/PhysRevB.97.125428 CrossRefADSGoogle Scholar
  32. Salski, B.: The extension of the Maxwell Garnett mixing rule for dielectric composites with nonuniform orientation of ellipsoidal inclusions. Prog. Electromagn. Res. Lett. 30, 173–184 (2012).  https://doi.org/10.2528/PIERL12020202 CrossRefGoogle Scholar
  33. Seidov, S.S., Kesharpu, K.K., Karpov, P.I., Grigoriev, P.D.: Conductivity of anisotropic inhomogeneous superconductors above the critical temperature. Phys. Rev. B 98, 014515 (2018).  https://doi.org/10.1103/PhysRevB.98.014515 CrossRefADSGoogle Scholar
  34. Sihvola, A.: Electromagnetic Mixing Formulas and Applications. IEE Electromagnetic Waves Series, vol. 47. The Institution of Electrical Engineers, Piscataway (1999)CrossRefGoogle Scholar
  35. Sihvola, A., Kettunen, H., Wallen, H.: Mixtures and composite particles: correspondence of effective description. In: 2013 URSI International Symposium on Electromagnetic Theory (EMTS 2013), Hiroshima, Japan, May 21–24, 2013. Hiroshima, Japan, pp. 908–911 (2013)Google Scholar
  36. Skryabin, I.L., Radchik, A.V., Moses, P., Smith, G.B.: The consistent application of Maxwell–Garnett effective medium theory to anisotropic composites. Appl. Phys. Lett. 70, 2221–2223 (1997).  https://doi.org/10.1063/1.118821 CrossRefADSGoogle Scholar
  37. Takayama, O., Crasovan, L.-C., Johansen, S.K., Mihalache, D., Artigas, D., Torner, L.: Dyakonov surface waves: a review. Electromagnetics 28, 126–145 (2008).  https://doi.org/10.1080/02726340801921403 CrossRefGoogle Scholar
  38. Takayama, O., Crasnovan, L., Artigas, D., Torner, L.: Observation of Dyakonov surface waves. Phys. Rev. Lett. 102(4), 043903 (2009).  https://doi.org/10.1103/PhysRevLett.102.043903 CrossRefADSGoogle Scholar
  39. Tong, J., Zhou, W., Qu, Y., Xu, Z., Huang, Z., Zhang, D.H.: Surface plasmon induced direct detection of long wavelength photons. Nat. Commun. 8, 1660 (2017).  https://doi.org/10.1038/s41467-017-01828-2 CrossRefADSGoogle Scholar
  40. Tuz, V.R., Fesenko, V.I., Fedorin, I.V., Sun, H.-B., Han, W.: Coexistence of bulk and surface polaritons in a magnetic-semiconductor superlattice influenced by a transverse magnetic field. J. Appl. Phys. 121, 103102 (2017).  https://doi.org/10.1063/1.4977956 CrossRefADSGoogle Scholar
  41. Zapata-Rodriguez, C.J., Miret, J.J., Vukovic, S., Belic, M.R.: Engineered surface waves in hyperbolic metamaterials. Opt. Express 21, 19113–19127 (2013).  https://doi.org/10.1364/OE.21.019113 CrossRefADSGoogle Scholar
  42. Zapata-Rodríguez, C.J., Vukovic, S., Miret, J.J., Naserpour, M., Belic, M.R.: Dyakonov surface waves: anisotropy-enabling confinement on the edge. In: Ebrahimi, F. (ed.) Surface Waves. New Trends and Developments, pp. 43–69. Rijeka, IntechOpen (2018).  https://doi.org/10.5772/intechopen.74126 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical CyberneticsNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KievUkraine

Personalised recommendations