Advertisement

Hybrid CdS nanowires/Si heterostructure photodetector fabricated by intense pulsed light assisted - laser ablation in liquid

  • Walid K. Hamoudi
  • Raid A. IsmailEmail author
  • Hadeel F. Abbas
Article
  • 34 Downloads

Abstract

Synthesis of CdS nanowires NWs by combined intense pulsed light (IPL) and pulsed laser ablation in liquid is demonstrated for the first time. An IPL source providing 3 ms duration pulses was used to assist the synthesis of CdS nanowires by 7 ns pulsed laser ablation of cadmium target in thiourea and CTAB solution. The results showed a small increase in optical energy band gap of CdS NWs and a decrease of the nanowires diameter from 50 to 40 nm after combining the IPL. The intensity of the photoluminescence emission peak located at 458 nm was doubled when the IPL combined laser ablation process. In addition the synthesized CdS nanowires showed single crystalline pure hexagonal wurtzite phase with decreased particles agglomeration and smaller particle size. Raman spectra were improved too by revealing sharp and shifted peaks at 293 and 585 cm−1. The figures of merit of hybrid n-CdSNWs/p-Si heterojunction photodetector namely responsivity and minority carrier lifetime were found to be improved remarkably after using IPL assisted laser ablation.

Keywords

IPL Laser ablation CdS Nanoparticles Nanowires Heterostructure 

Notes

References

  1. Amendola, V., Meneghetti, M.: What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013).  https://doi.org/10.1039/C2CP42895D CrossRefGoogle Scholar
  2. Chen, G.X., Hong, M.H., Chong, T.C., Elim, H.I., Ma, G.H., Ji, W.: Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys. 95, 1455–1459 (2004).  https://doi.org/10.1063/1.1637933 ADSCrossRefGoogle Scholar
  3. Chen, X., Liu, R., Qiao, S., Mao, J., Du, X.: Synthesis of cadmium chalcogenides nanowires via laser-activated gold catalysts in solution. Mater. Chem. Phys. 212, 408–414 (2018).  https://doi.org/10.1016/j.matchemphys.2018.03.050 CrossRefGoogle Scholar
  4. Choi, Y., Lee, J., Im, S.: Photoresponse characteristics of n-ZnO/p-Si heterojunction photodiodes. J. Vac. Sci. Technol. B 20, 2384–2387 (2002).  https://doi.org/10.1116/1.1524152 CrossRefGoogle Scholar
  5. Chowdhury, P.S., Sen, P., Patra, A.: Optical properties of CdS nanoparticles and the energy transfer from CdS nanoparticles to Rhodamine 6G. Chem. Phys. Lett. 413, 311–314 (2005).  https://doi.org/10.1016/j.cplett.2005.07.088 ADSCrossRefGoogle Scholar
  6. Darwish, A.M., Eisa, W.H., Shabaka, A.A., Talaat, M.H.: Synthesis of nano-cadmium sulfide by pulsed laser ablation in liquid environment. Spectrosc. Lett. 48, 638–645 (2015).  https://doi.org/10.1080/00387010.2014.948210 ADSCrossRefGoogle Scholar
  7. Dhyani, V., Das, S.: High-speed scalable silicon-MoS2 P-N heterojunction photodetectors. Sci. Rep. 7, 44243–44251 (2017).  https://doi.org/10.1038/srep44243 ADSCrossRefGoogle Scholar
  8. Garcia Guillen, G., Zuniga Ibarra, V.A., Mendivil Palma, M.I., Krishnan, B., Avellaneda Avellaneda, D., Shaji, S.: Effects of liquid medium and ablation wavelength on the properties of cadmium sulfide nanoparticles formed by pulsed-laser ablation. ChemPhysChem 18, 1035–1046 (2017).  https://doi.org/10.1002/cphc.201601056 CrossRefGoogle Scholar
  9. Gong, W., Zheng, Z., Zheng, J., Hu, X., Gao, W.: Water soluble CdS nanoparticles with controllable size prepared via femtosecond laser ablation. J. Appl. Phys. 102, 64304–64307 (2007).  https://doi.org/10.1063/1.2781382 CrossRefGoogle Scholar
  10. Gunasekaran, S., Arunbalaji, R., Kumaresan, S., Anand, G., VivekAnand, M.: Computation and interpretation of vibrational spectra on the structure of Nitrazepam using semi-empirical and density functional methods. Int. J. ChemTech. Res. 1(4), 1109–1124 (2009)Google Scholar
  11. Hamoudi, W.K., Ismail, R.A., Shakir, H.A.: Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications. J. Cosmet. Laser Ther. 19, 325–333 (2017).  https://doi.org/10.1080/14764172.2017.1334924 CrossRefGoogle Scholar
  12. Hullavarad, N.V., Hullavarad, S.S., Karulkar, P.C.: Cadmium sulphide (CdS) nanotechnology: synthesis and applications. J. Nanosci. Nanotechnol. 8, 3272–3299 (2008)CrossRefGoogle Scholar
  13. Ismail, R.: Fabrication and characteristics study of n-Bi2O3/n-Si heterojunction. J. Semicond. Tech. Sci. 6, 119–123 (2006)Google Scholar
  14. Ismail, R., Hassan, K., Abdulrazaq, O., Abode, W.: Optoelectronic properties of CdTe/Si heterojunction prepared by pulsed Nd:YAG. Mat. Sci. Semi. Process 10, 19–23 (2007).  https://doi.org/10.1016/j.mssp.2006.12.001 CrossRefGoogle Scholar
  15. Ismail, R., AL-Samara’ia, A., AL-Ani, M., Sultan, O., Tawftq, S.: Dependence of photovoltaic properties of CdS/Si isotype heterojunction solar cells on deposition temperature. Optoelectr. Adv. Mat. Rapid Commun. 2, 232–236 (2008)Google Scholar
  16. Ismail, R., Khashan, K., Alwan, A.: Study of the effect of incorporation of CdS nanoparticles on the porous silicon photodetector. Silicon 9, 321–326 (2016).  https://doi.org/10.1007/s12633-016-9446-4 CrossRefGoogle Scholar
  17. Ismail, R., Hamoudi, W., Abbas, H.: New route for cadmium sulfide nanowires synthesis via pulsed laser ablation of cadmium in thiourea solution. Mater. Res. Express. 5, 25017–25029 (2018). http://stacks.iop.org/2053-1591/5/i=2/a=025017 ADSCrossRefGoogle Scholar
  18. Jang, J.S., Joshi, U.A., Lee, J.S.: Solvothermal synthesis of CdS nanowires for photocatalytic hydrogen and electricity production. J. Phys. Chem. C 111, 13280–13287 (2007).  https://doi.org/10.1021/jp072683b CrossRefGoogle Scholar
  19. Jie, J.S., Zhang, W.J., Jiang, Y., Lee, S.T.: Transport properties of single-crystal CdS nanoribbons. Appl. Phys. Lett. 89, 223117 (2006).  https://doi.org/10.1063/1.2398891 ADSCrossRefGoogle Scholar
  20. Mahdi, M., Hassan, J., Kasim, S., Ng, S., Hassan, Z.: Solvothermal growth of single-crystal CdS nanowires. Bull. Mater. Sci. 37, 337–345 (2014).  https://doi.org/10.1007/s12034-014-0655-4 CrossRefGoogle Scholar
  21. Mathew, S.: Preparation and study of optical properties of CdS, CdS-TiO2 and CdS-Au nanocomposites for photonic applications, Ph.D thesis, Cochin University of Science and Technology, India (2015)Google Scholar
  22. Milekhin, A., Sveshnikova, L., Duda, T., Surovtsev, N., Adichtchev, V., Zahn, D.: Surface enhanced Raman scattering by CdS quantum Dots. JETP Lett. 88, 799–801 (2008).  https://doi.org/10.1134/S0021364008240053 ADSCrossRefGoogle Scholar
  23. Park, J., Kim, S., Sim, Y., Yoon, O.J., Han, M.S., Yang, H.S., Kim, Y.Y., Jhon, Y.M., Kim, J., Seong, M.-J.: Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst. J. Alloys Compd. 659, 38–43 (2016).  https://doi.org/10.1016/j.jallcom.2015.10.298 CrossRefGoogle Scholar
  24. Sze, S., Ng, K.: Physics of Semiconductor Devices, 3rd edn. Wiley, Hoboken, USA (2006)CrossRefGoogle Scholar
  25. Xu, D., Liu, Z., Liang, J., Qian, Y.: Solvothermal synthesis of CdS nanowires in a mixed solvent of ethylenediamine and dodecanethiol. J. Phys. Chem. B. 109, 14344–14349 (2005).  https://doi.org/10.1021/jp051980i CrossRefGoogle Scholar
  26. Yang, X., Xu, C., Giles, N.C.: Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent Hall measurements. J. Appl. Phys. 104, 73727–73732 (2008).  https://doi.org/10.1063/1.2996032 CrossRefGoogle Scholar
  27. Yeon, D., Mohanty, B., Lee, S., Cho, Y.: Effect of band-aligned double absorber layers on photovoltaic characteristics of chemical bath deposited PbS/CdS thin film solar cells. Sci. Rep. 5, 14353 (2015).  https://doi.org/10.1038/srep14353 ADSCrossRefGoogle Scholar
  28. Zhao, Y., Yang, X., Huang, W., Zou, X., Lu, Z.: Synthesis and optical properties of CdS nanowires by a simple chemical deposition. J. Mat. Sci. 45, 1803–1808 (2010).  https://doi.org/10.1007/s10853-009-4162-8 ADSCrossRefGoogle Scholar
  29. Zhou, Y., Chen, L.W., Du, Z.R., Cao, Y., Li, F.P., Hong, M.H.: Tunable optical nonlinearity of silicon nanoparticles in solid state organic matrix. Opt. Mater. Express 5, 1606–1612 (2015).  https://doi.org/10.1364/OME.5.001606 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied ScienceUniversity of TechnologyBaghdadIraq

Personalised recommendations