Novel refractive index sensor based on fiber bragg grating in nano-bore optical fiber

  • Xiaohe Li
  • Sheng LiangEmail author
  • Yongxin Zhang
  • Qianqing Yu
  • Xinzhi Sheng
  • Shuqin Lou
  • Xin Wang
  • Wan Zhang
  • Mingli Dong
  • Lianqing Zhu


In this paper, we propose a novel refractive index sensor with large dynamic range based on fiber Bragg grating in the nano-bore optical fiber. The spectral responses of grating on the filling index in the bore with different bore diameters and index ranges are numerically studied by the finite element method and coupled mode theory based transmission matrix method. It is found that the Bragg wavelength of grating is sensitive to the filling index in the bore. The influences of bore diameter on the wavelength sensitivity, resolution and dynamic range of the index sensor are analyzed. There exists a trade off between the linear dynamic range and sensitivity of index when the bore diameter varies. The optimized wavelength sensitivity and resolution of filling index are 53.6923 nm/index unit and 9.3123 × 10−6 index under a linear index range of 1.0–1.4 using 2 µm bore diameter. The optimized linear dynamic range of index is 1.0–1.48 with wavelength sensitivity of 13.3056 nm/index unit and resolution of 3.7578 × 10−5 index using 1 µm bore diameter. Our proposed index sensor has the technical advantages of simple all-fiber structure, large index range, and potential capability to synchronously detect index, temperature and strain.


Special optical fiber Microstructured fiber Nano-bore optical fiber Fiber-optic sensor Refractive index sensor Fiber Bragg grating (FBG) 



This work is supported by the Beijing Natural Science Foundation (4192047), the Fundamental Research Funds for the Central Universities (2018JBM070), the National Natural Science Foundation of China (61675019), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_16R07).


  1. An, G., Li, S., Yan, X., Zhang, X., Yuan, Z., Zhang, Y.: High-sensitivity and tunable refractive index sensor based on dual-core photonic crystal fiber. JOSA B 33, 1330–1334 (2016)ADSCrossRefGoogle Scholar
  2. Aray, A., Saghafifar, H., Soltanolkotabi, M.: Calculation of dispersion relation and single mode operation in surface plasmon resonance based fiber optic refractive index sensors. J. Lightwave Technol. 34(11), 2782–2788 (2016)ADSCrossRefGoogle Scholar
  3. Arregui, F.J., Del Villar, I., Zamarreño, C.R., Zubiate, P., Matias, I.R.: Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sens. Actuators B Chem. 232, 660–665 (2016)CrossRefGoogle Scholar
  4. Bhardwaj, V., Singh, V.K.: Fabrication and characterization of cascaded tapered Mach–Zehnder interferometer for refractive index sensing. Sens. Actuators A, Phys. 244, 30–34 (2016)CrossRefGoogle Scholar
  5. Cennamo, N., Zuppella, P., Bacco, D., Corso, A.J., Pelizzo, M.G., Zeni, L.: SPR sensor platform based on a novel metal bilayer applied on D–shaped plastic optical fibers for refractive index measurements in the range 1.38–1.42. IEEE Sens. J. 16(12), 4822–4827 (2016)ADSCrossRefGoogle Scholar
  6. Cucinotta, A., Selleri, S., Vincetti, L., Zoboli, M.: Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method. J. Lightwave Technol. 20(8), 1433–1442 (2002)ADSCrossRefGoogle Scholar
  7. De-Jun, F., Mao-Sen, Z., Liu, G., Xi-Lu, L., Dong-Fang, J.: D-shaped plastic optical fiber sensor for testing refractive index. IEEE Sens. J. 14(5), 1673–1676 (2014)ADSCrossRefGoogle Scholar
  8. Del Villar, I., et al.: Optical sensors based on lossy-mode resonances. Sens. Actuators B Chem. 240, 174–185 (2017)CrossRefGoogle Scholar
  9. Ding, Z., Lang, T., Wang, Y., Zhao, C.: Surface plasmon resonance refractive index sensor based on tapered coreless optical fiber structure. J. Lightwave Technol. 35(21), 4734–4739 (2017)ADSCrossRefGoogle Scholar
  10. Dissanayake, K.P.W., Wu, W., Nguyen, H., Sun, T., Grattan, K.T.V.: Graphene-oxide-coated long-period grating-based fiber optic sensor for relative humidity and external refractive index. J. Lightwave Technol. 36(4), 1145–1151 (2018)ADSCrossRefGoogle Scholar
  11. Erdogan, T.: Fiber grating spectra. J. Lightwave Technol. 15(8), 1277–1294 (1997)ADSCrossRefGoogle Scholar
  12. Faez, Sanli, Lahini, Yoav, Weidlich, Stefan, Garmann, Rees F., Wondraczek, Katrin, Zeisberger, Matthias, Schmidt, Markus A., Orrit, Michel, Manoharan, Vinothan N.: Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)CrossRefGoogle Scholar
  13. Frosz, Michael H., Stefani, Alessio, Bang, Ole: Highly sensitive and simple method for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Opt. Express 19(11), 10471–10484 (2011a)ADSCrossRefGoogle Scholar
  14. Frosz, M.H., Stefani, A., Bang, O.: Highly sensitive and simplemethod for refractive index sensing of liquids in microstructured optical fibers using four-wave mixing. Opt. Express 19, 10471–10484 (2011b)ADSCrossRefGoogle Scholar
  15. Guzmán-Sepúlveda, J.R., Guzmán-Cabrera, R., Torres-Cisneros, M., Sánchez-Mondragón, J.J., May-Arrioja, D.A.: A highly sensitive fiber optic sensor based on two-core fiber for refractive index measurement. Sensors 13, 14200–14213 (2013)CrossRefGoogle Scholar
  16. Hamed, N., Latifi, H., Pak, M., Behroodi, E., Oraie, M., Zibaii, M.I.: Sensitivity enhancement of cylindrically-symmetric optical fiber refractive index sensors by utilizing graphene. Optics Communications 429, 1–4 (2018)ADSCrossRefGoogle Scholar
  17. Hernández-Arriaga, M.V., Bello-Jiménez, M.A., Rodríguez-Cobos, A., López-Estopier, R., Andrés, M.V.: High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers. IEEE Sens. J. 17(2), 333–339 (2017)ADSCrossRefGoogle Scholar
  18. Hirsch, Marzena: Fiber optic microsphere with a ZnO thin film for potential application in a refractive index sensor-theoretical study. Photon. Lett. Poland 10(3), 85–87 (2018)CrossRefGoogle Scholar
  19. Jeong, H., et al.: Fiber-optic refractive index sensor based on the cone-based round structure. IEEE Sens. J. 13(1), 351–358 (2013)ADSCrossRefGoogle Scholar
  20. Jha, R., Villatoro, J., Badenes, G., Pruneri, V.: Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 34, 617–619 (2009)ADSCrossRefGoogle Scholar
  21. Ji, W.B., Liu, H.H., Tjin, S.C., Chow, K.K., Lim, A.: Ultrahigh sensitivity refractive index sensor based on optical microfiber. IEEE Photon. Technol. Lett. 24(20), 1872–1874 (2012)ADSCrossRefGoogle Scholar
  22. Jiang, M., et al.: Optical response of fiber-optic fabry-perot refractive-index tip sensor coated with polyelectrolyte multilayer ultra-thin films. J. Lightwave Technol. 31(14), 2321–2326 (2013)ADSCrossRefGoogle Scholar
  23. Jiang, S., Schaarschmidt, K., Weidlich, S., Schmidt, M.A.: Fiber-integrated absorption spectroscopy using liquid-filled nanobore optical fibers. J. Lightwave Technol. 36(18), 3970–3975 (2018)ADSCrossRefGoogle Scholar
  24. Kim, K., Mizuno, Y., Nakano, M., Onoda, S., Nakamura, K.: Refractive index sensor for liquids and solids using dielectric multilayer films deposited on optical fiber end surface. IEEE Photon. Technol. Lett. 23(20), 1472–1474 (2011)ADSCrossRefGoogle Scholar
  25. Lee, H., et al.: Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel. Opt. Express 19, 8200–8207 (2011)ADSCrossRefGoogle Scholar
  26. Liang, S., Tjin, S.C., Ngo, N.Q., Zhang, C., Li, L.: Novel tunable fiber-optic edge filter based on modulating the chirp rate of a π-phase-shifted fiber Bragg grating in transmission. Optics Communications 282(7), 1363–1369 (2009)ADSCrossRefGoogle Scholar
  27. Liao, C.R., Chen, H.F., Wang, D.N.: Ultracompact optical fiber sensor for refractive index and high-temperature measurement. J. Lightwave Technol. 32(14), 2531–2535 (2014)CrossRefGoogle Scholar
  28. Luan, N., Ding, C., Yao, J.: A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J. 8(2), 1–8 (2016)CrossRefGoogle Scholar
  29. May-Arrioja, D.A., Guzman-Sepulveda, J.R.: Highly sensitive fiber optic refractive index sensor using multicore coupled structures. J. Lightwave Technol. 35(13), 2695–2701 (2017)ADSCrossRefGoogle Scholar
  30. Mishra, V., Singh, S.P., Haldar, R., Varshney, S.K.: Sub-wavelength dual capillaries-assisted chalcogenide optical fibers: unusual modal properties in mid-IR (2–5 μm) spectral range. IEEE J. Sel. Top. Quantum Electron. 22(2), 208–213 (2016)ADSCrossRefGoogle Scholar
  31. Nagarajan, N., Yamunadevi, R., Vasantha Jayakantha Raja, R., Joshva Raj, G.: Ultra sensitive nonlinear fiber optics-based refractive index sensor using degenerate four wave mixing technique in photonic crystal fiber. IEEE Sens. J. 18(16), 6607–6614 (2018)ADSCrossRefGoogle Scholar
  32. Pevec, S., Donlagic, D.: Multi parameter fiber-optic sensor for simultaneous measurement of thermal conductivity, pressure, refractive index, and temperature. IEEE Photon. J. 9(1), 1–14 (2017)CrossRefGoogle Scholar
  33. Pevec, Simon, Donlagic, Denis: Miniature fiber-optic Fabry-Perot refractive index sensor for gas sensing with a resolution of 5×10 − 9 RIU. Opt. Express 26(18), 23868–23882 (2018)ADSCrossRefGoogle Scholar
  34. Rindorf, L., Bang, O.: Highly sensitive refractometer with a photonic-crystal- fiber long-period grating. Opt. Lett. 33, 563–565 (2008)ADSCrossRefGoogle Scholar
  35. Ruan, Y., Ebendorff-Heidepriem, H., Afshar, S., Monro, T.M.: Light confinement within nanoholes in nanostructured optical fibers. Opt. Express 18(25), 26018–26026 (2010)ADSCrossRefGoogle Scholar
  36. Santos, D.F., Guerreiro, A., Baptista, J.M.: SPR microstructured D-type optical fiber sensor configuration for refractive index measurement. IEEE Sens. J. 15(10), 5472–5477 (2015)ADSCrossRefGoogle Scholar
  37. Schaarschmidt, Kay, Weidlich, Stefan, Reul, Daniel, Schmidt, Markus A.: Bending losses and modal properties of nano-bore optical fibers. Opt. Lett. 43(17), 4192–4195 (2018)ADSCrossRefGoogle Scholar
  38. Shin, J., Park, J.: Plastic optical fiber refractive index sensor employing an in-line submillimeter hole. IEEE Photon. Technol. Lett. 25(19), 1882–1884 (2013)ADSCrossRefGoogle Scholar
  39. Singh, S.P., Mishra, V., Datta, P.K., Varshney, S.K.: Dispersion engineered capillary-assisted chalcogenide optical fiber based mid-IR parametric sources. J. Lightwave Technol. 33(1), 55–61 (2015)ADSCrossRefGoogle Scholar
  40. Tian, Z., Yam, S.S., Loock, H.-P.: Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Opt. Lett. 33, 1105–1107 (2008)ADSCrossRefGoogle Scholar
  41. Tian, J., Lu, Z., Quan, M., Jiao, Y., Yao, Y.: Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concavecore photonic crystal fiber. Opt. Express 24, 20132–20142 (2016)ADSCrossRefGoogle Scholar
  42. Tiwari, S., Singh, M.K., Pandey, P.C.: Refractive index sensor based on spiral-shaped plastic optical fiber. IEEE Sens. J. 17(6), 1692–1695 (2017)ADSCrossRefGoogle Scholar
  43. Town, G.E., Yuan, W., McCosker, R., Bang, O.: Microstructured optical fiber refractive index sensor. Opt. Lett. 35, 856–858 (2010)ADSCrossRefGoogle Scholar
  44. Tuniz, Alessandro, Jain, Chhavi, Weidlich, Stefan, Schmidt, Markus A.: Broadband azimuthal polarization conversion using gold nanowire enhanced step-index fiber. Opt. Lett. 41(3), 448–451 (2016)ADSCrossRefGoogle Scholar
  45. Villatoro, J., et al.: Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity. Opt. Express 17, 1447–1453 (2009)ADSCrossRefGoogle Scholar
  46. Viphavakit, C., Keeffe, S.O., Yang, M., Andersson-Engels, S., Lewis, E.: Gold enhanced hemoglobin interaction in a fabry-pérot based optical fiber sensor for measurement of blood refractive index. J. Lightwave Technol. 36(4), 1118–1124 (2018)ADSCrossRefGoogle Scholar
  47. Wang, Y., Yang, M., Wang, D.N., Liu, S., Lu, P.: Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. Journal of the Optical Society of America B 27(3), 370–374 (2010a)CrossRefGoogle Scholar
  48. Wang, Y., Yang, M., Wang, D., Liu, S., Lu, P.: Fiber in-line Mach–Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity. JOSA B 27, 370–374 (2010b)ADSCrossRefGoogle Scholar
  49. Wang, H., Yan, X., Li, S., An, G., Zhang, X.: High sensitivity refractive index sensor based on dual-core photonic crystal fiber with hexagonal lattice. Sensors 16, 1655 (2016)CrossRefGoogle Scholar
  50. Wu, D.K., Kuhlmey, B.T., Eggleton, B.J.: Ultrasensitive photonic crystal fiber refractive index sensor. Opt. Lett. 34, 322–324 (2009)ADSCrossRefGoogle Scholar
  51. Xu, W., Huang, X.G., Pan, J.S.: Simple fiber-optic refractive index sensor based on fresnel reflection and optical switch. IEEE Sens. J. 13(5), 1571–1574 (2013)ADSCrossRefGoogle Scholar
  52. Yang, J., Jiang, L., Wang, S., Chen, Q., Li, B., Xiao, H.: Highly sensitive refractive index optical fiber sensors fabricated by a femtosecond laser. IEEE Photon. J. 3(6), 1189–1197 (2011)ADSCrossRefGoogle Scholar
  53. Yuan, W., Town, G.E., Bang, O.: Refractive index sensing in an allsolid twin-core photonic bandgap fiber. IEEE Sensors J. 10(7), 1192–1199 (2010)ADSCrossRefGoogle Scholar
  54. Zhang, Y., Gao, S., Zhang, A.P.: Optically heated long-period grating as temperature-insensitive fiber-optic refractive-index sensor. IEEE Photon. J. 4(6), 2340–2345 (2012)ADSCrossRefGoogle Scholar
  55. Zhao, C., Li, J., Zhang, S., Zhang, Z., Jin, S.: Simple fresnel reflection-based optical fiber sensor for multipoint refractive index measurement using an AWG. IEEE Photon. Technol. Lett. 25(6), 606–608 (2013)ADSCrossRefGoogle Scholar
  56. Zhao, Y., Cai, L., Hu, H.: Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure. IEEE Sens. J. 15(11), 6348–6353 (2015)ADSCrossRefGoogle Scholar
  57. Zheng, Y., et al.: Fiber optic fabry-perot optofluidic sensor with a focused ion beam ablated microslot for fast refractive index and magnetic field measurement. IEEE J. Sel. Top. Quantum Electron. 23(2), 322–326 (2017)ADSCrossRefGoogle Scholar
  58. Zhou, K., Zhang, L., Chen, X., Bennion, I.: Optic sensors of high refractive-index responsivity and low thermal cross sensitivity that use fiber Bragg gratings of > 80 tilted structures. Opt. Lett. 31, 1193–1195 (2006)ADSCrossRefGoogle Scholar
  59. Zhou, A., et al.: Optical refractometer based on an asymmetrical twin-core fiber Michelson interferometer. Opt. Lett. 36, 3221–3223 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Traffic and TransportationBeijing Jiaotong UniversityBeijingChina
  2. 2.Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of ScienceBeijing Jiaotong UniversityBeijingChina
  3. 3.Yangtze Optical Electronic Company Ltd.WuhanChina
  4. 4.Wuhan University of TechnologyWuhanChina
  5. 5.School of Electronic and Information EngineeringBeijing Jiaotong UniversityBeijingChina
  6. 6.Beijing Engineering Research Center of Optoelectronic Information and Instruments, Beijing Key Laboratory for Optoelectronics Measurement TechnologyBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations