Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal

  • Behrang Hadian Siahkal-Mahalle
  • Kambiz AbediEmail author


In this paper, a hybrid electro-optical modulator based on a one-dimensional photonic crystal nanobeam cavity is proposed. The main component of the cavity builder is the indium–tin–oxide that is a transparent conductive oxide. The proposed structure is used to minimize optical losses and also to have a high-quality factor with a tunability from the distributed feedback system. The proposed modulator has a wide range of resonant tunable in a footprint of 1.892 μm2. This structure has the ability to shift the wavelength of 1.55 μm using a very small voltage 0.1 V. Simulation results show that the proposed structure has an insertion loss of 0.027 dB, extension ratio 3.484 dB, 119.89 GHz modulation speed, and 0.59 aJ/bit modulation energy. By comparing the proposed method parameters and other modulators based on the one-dimensional photonic crystal nanobeam cavity, a significant improvement in modulation voltage, insertion losses, energy consumption, and footprint have been observed.


Indium tin oxide (ITO) Photonic crystal (PhC) Electro-optical modulator 



  1. Abb, M., Wang, Y., de Groot, C.H., Muskens, O.L.: Hotspotmediated ultrafast nonlinear control of multifrequency plasmonic nanoantennas. Nat. Commun. 5, 4869 (2014)CrossRefGoogle Scholar
  2. Amin, R., Suer, C., Ma, Z., Sarpkaya, I., Khurgin, J.B., Agarwal, R., Sorger, V.J.: A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance. Solid State Electron. 136, 92–101 (2017)ADSCrossRefGoogle Scholar
  3. Amin, R., Suer, C., Ma, Z., Sarpkaya, I., Khurgin, J.B., Agarwal, R., Sorger, V.J.: Active material, optical mode and cavity impact on nanoscale electro-optic modulation performance. Nature 556, 483–486 (2018)CrossRefGoogle Scholar
  4. Aouani, H., Rahmani, M., Navarro-Cía, M., Maier, S.A.: Thirdharmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 9, 290–294 (2014)ADSCrossRefGoogle Scholar
  5. Ding, J., Ji, R., Zhang, L., Yang, L.: Electro-optical response analysis of a 40 Gb/s silicon Mach–Zehnder optical modulator. J. Lightwave Technol. 31, 2434–2440 (2013)ADSCrossRefGoogle Scholar
  6. Dionne, J.A., Diest, K., Sweatlock, L.A., Atwater, H.A.: PlasMOStor: a metal–oxide–si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009)ADSCrossRefGoogle Scholar
  7. Govindarajan, S., Bösckeb, T.S., Sivasubramani, P., KirschC, P.D., LeeD, B.H., Tseng, H.H., Jammyd, R.: Higher permittivity rare earth doped HfO2 for sub-45- metal–insulator–semiconductor devices. Appl. Phys. Lett. 91, 62906 (2007)CrossRefGoogle Scholar
  8. Haffner, C., Heni, W., Fedoryshyn, Y., Niegemann, J., Melikyan, A., Elder, D.L., Baeuerle, B., Salamin, Y., Josten, A., Koch, U., Hoessbacher, C., Ducry, F., Juchli, L., Emboras, A., Hillerkuss, D., Kohl, M., Dalton, L.R., Hafner, C., Leuthold, J.: All plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat. Photonics 9, 525–528 (2015)ADSCrossRefGoogle Scholar
  9. Hendrickson, J., Soref, R., Sweet, J., Buchwald, W.: Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: design and simulation. Opt. Express 22, 3271–3283 (2014)ADSCrossRefGoogle Scholar
  10. Huang, X.L., Zheng, C.T., Sun, C.L., Li, C.T., Wang, Y.D., Zhang, D.M.: Investigation on an ultra-compact Mach–Zehnder interferometer electro-optic switch using poled-polymer/silicon slot waveguide. Opt. Quantum Electron. 47, 3783–3803 (2015)CrossRefGoogle Scholar
  11. Huang, L., Zhou, J., Sun, F., Fu, Z., Tian, H.: Optimization of one dimensional photonic crystal elliptical-hole low-index mode nanobeam cavities for on-chip sensing. J. Lightwave Technol. 34, 3496–3502 (2016)ADSCrossRefGoogle Scholar
  12. Janjan, B., Zarifkar, A., Miri, M.: Ultra-compact high-speed electro-optical modulator with extremely low energy consumption based on polymer-filled hybrid plasmonic waveguide. Plasmonics 11, 509–514 (2016)CrossRefGoogle Scholar
  13. Javid, M.R., Miri, M., Zarifkar, A.: Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt. Commun. 410, 652–659 (2018)ADSCrossRefGoogle Scholar
  14. Kauranen, M., Zayats, A.: Nonlinear plasmonics. Nat. Photonics 6, 737–748 (2012)ADSCrossRefGoogle Scholar
  15. Kim, H., McIntyre, P.C.: Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition. Appl. Phys. Lett. 82, 106–108 (2003)ADSCrossRefGoogle Scholar
  16. Kuo, Y.H., Lee, Y.K., Ge, Y., Ren, S., Roth, J.E., Kamins, T.I., Miller, D.A.B., Harris, J.S.: Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005)ADSCrossRefGoogle Scholar
  17. Lee, G.N., Machaiah, P.M., Park, W.H., Kim, J.: Enhanced optical and electrical properties of ITO/Ag/AZO transparent conductors for photoelectric applications. Int. J. Photoenergy 1, 1–9 (2017)CrossRefGoogle Scholar
  18. Li, Y., Zhang, L., Song, M., Zhang, B., Yang, J.Y., Beausoleil, R.G., Willner, A.E., Dapkus, P.D.: Coupled-ring-resonator-based silicon modulator for enhanced performance. Opt. Express 16, 13342–13348 (2008)ADSCrossRefGoogle Scholar
  19. Li, X., Feng, X., Cui, K., Liu, F., Huang, Y.: Integrated silicon modulator based on microring array assisted MZI. Opt. Express 22, 10550–10558 (2014)ADSCrossRefGoogle Scholar
  20. Lin, C., Helmy, A.S.: Dynamically reconfigurable nanoscale modulators utilizing coupled hybrid plasmonics. Sci. Rep. 5, 12313 (2015)ADSCrossRefGoogle Scholar
  21. Lin, T.R., Lin, C.-H., Hsu, J.C.: Strong optomechanical interaction in hybrid plasmonic–photonic crystal nanocavities with surface acoustic waves. Sci. Rep. 5, 13782 (2015)ADSCrossRefGoogle Scholar
  22. Liu, A., Jones, R., Samara-Rubio, D., Rubin, D., Cohen, O., Nicolaescu, R., Paniccia, M.: A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2004)ADSCrossRefGoogle Scholar
  23. Liu, F., Zhang, L., Lu, X., Wang, W., Wang, L., Wang, G., Zhang, W., Zhao, Z.: Ultra-high Q one-dimensional hybrid PhC-SPP waveguide microcavity with large structure tolerance. J. Mod. Opt. 63, 1158–1165 (2016)ADSCrossRefGoogle Scholar
  24. Lou, F.: Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Opt. Express 21, 20041–20051 (2013)ADSCrossRefGoogle Scholar
  25. Ma, Z., Li, Z., Liu, K., Ye, C., Sorger, V.J.: Indium–tin–oxide for high-performance electro-optic modulation. Nano Photonics 4, 198–213 (2015)Google Scholar
  26. Maksymov, I.S.: Optical switching and logic gates with hybrid plasmonic–photonic crystal nanobeam cavities. Phys. Lett. A 375, 918–921 (2011)ADSCrossRefGoogle Scholar
  27. Metzger, et al.: Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 14(5), 2867–2872 (2014)ADSCrossRefGoogle Scholar
  28. Michelotti, F., Dominici, L., Descrovi, E., Danz, N., Menchini, F.: Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm. Opt. Lett. 34, 839–841 (2009)ADSCrossRefGoogle Scholar
  29. Miller, D.A.B.: Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010)ADSCrossRefGoogle Scholar
  30. Nashima, S., Morikawa, O., Takata, K., Hangyo, M.: Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy. Appl. Phys. Lett. 79, 3923–3925 (2001)ADSCrossRefGoogle Scholar
  31. Neumann, F., Genenko, Y.A., Melzer, C., Yampolskii, S.V., von Seggern, H.: Self-consistent analytical solution of a problem of charge-carrier injection at a conductor/insulator interface. Phys. Rev. B 75, 205322 (2007)ADSCrossRefGoogle Scholar
  32. Ooka, Y., Daud, N.A.B., Tetsumoto, T., Tanabe, T.: Compact resonant electro-optic modulator using randomness of a photonic crystal waveguide. Opt. Express 24, 11199–11207 (2016)ADSCrossRefGoogle Scholar
  33. Paloi, F., Haxha, S.: Comparative analysis of long-haul system based on SSB modulation utilising dual parallel Mach–Zehnder modulators. Opt. Quantum Electron. 50, 104 (2018)CrossRefGoogle Scholar
  34. Prajzler, V., Neruda, M., Nekvindová, P.: Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides. J. Sci. Mater. Electron. 29, 5878–5884 (2018)CrossRefGoogle Scholar
  35. Qi, B., Yu, P., Li, Y., Hao, Y., Zhou, Q., Jiang, X., Yang, J.: Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab. Technol. Lett. 22, 724–726 (2010)CrossRefGoogle Scholar
  36. Qi, B., Yu, P., Li, Y., Jiang, X., Yang, M., Yang, J.: Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. Technol. Lett. 23, 992–994 (2011)CrossRefGoogle Scholar
  37. Reed, G.T.: Silicon Photonics: The State of the Art. JWS Publishing, San Diego (2008)CrossRefGoogle Scholar
  38. Reed, G.T., Mashanovich, G., Gardes, F.Y., Thomson, D.J.: Review article. Published: 30 July 2010Google Scholar
  39. Shakoor, A., Nozaki, K., Kuramochi, E., Nishiguchi, K., Shinya, A., Notomi, M.: Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt. Express 22, 28623–28634 (2014)ADSCrossRefGoogle Scholar
  40. Sun, X., Zhou, L., Zhu, H., Wu, Q., Li, X., Chen, J.: Design and analysis of a miniature intensity modulator based on a silicon–polymer–metal hybrid plasmonic waveguide. IEEE Photonics J. 6(1–10), 1–10 (2014)Google Scholar
  41. Tsakmakidis, K.L., Hess, O.: Extreme control of light in metamaterials: complete and loss-free stopping of light. Phys. B Conden. Matter 407, 4066–4069 (2012)ADSCrossRefGoogle Scholar
  42. Vasudev, A.P., Kang, J.H., Park, J., Liu, X., Brongersma, M.L.: Electro-optical modulation of a silicon waveguide with an “epsilon-near-zero” material. Opt. Express 21, 26387–26397 (2013)ADSCrossRefGoogle Scholar
  43. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4(795–808), 795–808 (2010)ADSCrossRefGoogle Scholar
  44. Wülbern, J.H., Petrov, A., Eich, M.: Electro-optical modulator in a polymer-infiltrated silicon slotted photonic crystal waveguide heterostructure resonator. Opt. Express 17, 304–313 (2009)ADSCrossRefGoogle Scholar
  45. Xin, Y.S., Sheng, L.J., Le, Z.: Graphene-integrated split-ring resonator terahertz modulator. Opt. Quantum Electron. 49, 350 (2017)CrossRefGoogle Scholar
  46. Xu, Q., Schmidt, B., Pradhan, S., Lipson, M.: Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)ADSCrossRefGoogle Scholar
  47. Xu, M., Li, F., Wang, T., Wu, J., Lu, L., Zhou, L., Su, Y.: Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter. J. Lightwave Technol. 31, 1170–1177 (2013)ADSCrossRefGoogle Scholar
  48. Yang, D., Zhang, P., Tian, H., Ji, Y., Quan, Q.: Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing. Quantum IEEE Photonics J. 7, 1–8 (2015)Google Scholar
  49. Zhang, X.J., Feng, X., Zhang, D.K., Huang, Y.D.: Compact temperature-insensitive modulator based on a silicon microring assistant Mach–Zehnder interferometer. Chin. Phys. B 21, 124203 (2012)ADSCrossRefGoogle Scholar
  50. Zhu, S., Lo, G.Q., Kwong, D.L.: Design of an ultra-compact electro-absorption modulator comprised of a deposited TiN/HfO2/ITO/Cu stack for CMOS backend integration. OSA 22, 17930–17947 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of Electrical EngineeringShahid Beheshti UniversityTehranIran

Personalised recommendations