Digital signal processing in coupled photonic crystal waveguides and its application to an all-optical AND logic gate

  • Vakhtang JandieriEmail author
  • Tornike Onoprishvili
  • Ramaz Khomeriki
  • Daniel Erni
  • Jaromir Pistora
Part of the following topical collections:
  1. 2018 - Optical Wave and Waveguide Theory and Numerical Modelling


The realization of all-optical AND logic gates for pulsed signal operation based on the photonic bandgap transmission phenomenon is proposed. We are using realistic planar air-hole type coupled photonic crystal waveguides (C-PCWs) with Kerr-type nonlinear background medium. The novelty of our analysis is that the proposed AND logic gate operates with the temporal solitons, which maintain a stable envelope propagating in the nonlinear C-PCWs, enabling true ultrafast full-optical digital signal processing in the time-domain. The bandgap transmission takes place when the operating frequency is chosen at the very edge of the dispersion curve of one of the supermodes in the C-PCWs. In this regard, our original fast and accurate method is used to efficiently calculate the supermodes of the C-PCW system. The underlying semi-analytical full-wave modal analysis is based on the evaluation of the lattice sums for complex wavenumbers using the transition-matrix method in combination with the generalized reflection-matrix approach. As a proof of concept successful pulse operation of the all-optical AND logic gate is demonstrated in the framework of extensive full-wave finite-difference time-domain electromagnetics analysis.


Photonic crystals Waveguides Electromagnetic optics Temporal solitons 



Regarding the activities centered around the rigorous full-wave analysis of multilayered scatterer configurations D. E. kindly acknowledges the support of the DFG CRC/TRR 196 in the framework of sub-project M03. V. J. kindly acknowledges financial support from the Alexander von Humboldt Foundation. V. J and R. Kh. kindly acknowledge financial support from Shota Rustaveli National Science Foundation (Grant 216662) and Science and Technology Center in Ukraine (Grant 6303).


  1. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26, 10–16 (2009a)ADSCrossRefGoogle Scholar
  2. Andalib, P., Granpayeh, N.: All-optical ultracompact photonic crystal NOR gate based on nonlinear ring resonators. J. Opt. A: Pure Appl. Opt. 11, 085203 (2009b)ADSCrossRefGoogle Scholar
  3. Baccarelli, P., Jandieri, V., Valerio, G., Schettini, G.: Efficient computation of the lattice sums for leaky waves using the Ewald method. In: Proceedings of the 11-th European Conference on Antennas and Propagation, Paris, France, 19–24 March, pp. 3222–3223 (2017)Google Scholar
  4. Capolino, F., Wilton, D.R., Johnson, W.A.: Efficient computation of the 2-D Green’s function for 1-D periodic structures using the Ewald method. IEEE Trans. Antennas Propag. 53, 2977–2984 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. Ewald, P.P.: Die Berechnung optischer und elektrostatischer gitterpotentiale. Ann. der Physik 369, 253–287 (1921)ADSCrossRefGoogle Scholar
  6. Fu, Y., Hu, X., Gong, Q.: Silicon photonic crystal all-optical logic gates. Phys. Lett. A 377, 329–333 (2013)ADSCrossRefGoogle Scholar
  7. Geniet, F., Leon, J.: Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89, 134102–134105 (2002)ADSCrossRefGoogle Scholar
  8. Husko, C., Vo, T.D., Corcoran, B., Li, J., Krauss, T., Eggleton, B.: Ultracompact all-optical XOR logic gate in a slow-light silicon photonic crystal waveguide. Opt. Express 19, 20681–20690 (2011)ADSCrossRefGoogle Scholar
  9. Ishizaka, Y., Kawaguchi, Y., Saitoh, K., Koshiba, M.: Design of ultra-compact all-optical XOR and ANG logic gates with low power consumption. Opt. Commun. 284, 3528–3533 (2011)ADSCrossRefGoogle Scholar
  10. Jandieri, V., Baccarelli, P., Valerio, G., Schettini, G.: 1-D Periodic lattice sums for complex and leaky waves in 2-D structures using higher-order Ewald formulation. In: IEEE Transaction on Antennas and Propagation. (in press)Google Scholar
  11. Jandieri, V., Yasumoto, K.: Electromagnetic scattering by layered cylindrical arrays of circular rods. IEEE Trans. Antennas Propag. 59, 2437–2441 (2011)ADSMathSciNetCrossRefGoogle Scholar
  12. Jandieri, V., Yasumoto, K., Pistora, J.: Coupled-Mode analysis of contra-directional coupling between two asymmetric photonic crystals waveguides. J. Opt. Soc. Am. A 31, 518–523 (2014)ADSCrossRefGoogle Scholar
  13. Jandieri, V., Khomeriki, R., Erni, D., Chew, W.C.: Realization of all-optical digital amplification in coupled nonlinear photonic crystal waveguides. Progress Electromagn. Res. 158, 63–72 (2017)CrossRefGoogle Scholar
  14. Jandieri, V., Baccarelli, P., Ponti, C., Schettini, G.: Full-wave analysis of leaky modes in 2-D EBG waveguides. In: Proceedings of the 11-th European Conference on Antennas and Propagation, Paris, France, 19–24 March, pp. 3224-3225 (2017b)Google Scholar
  15. Jandieri, V., Baccarelli, P., Valerio, G., Ceccuzzi, S., Ponti, C., Schettini, G.: Efficient and rigorous analysis of leaky modes in 2-D EBG guiding structures. Proceedings of the 19-th International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 11–15 September, pp. 444–445 (2017c)Google Scholar
  16. Jandieri, V., Khomeriki, R., Erni, D.: Realization of true all-optical AND logic gate based on the nonlinear coupled air-hole type photonic crystal waveguide. Opt. Express 26(16), 19845–19853 (2018a)ADSCrossRefGoogle Scholar
  17. Jandieri, V., Khomeriki, R., Erni, D., Chew, W. C.: All-optical digital amplification in nonlinear photonic crystal waveguides. In: Proceedings of XXVI Int. Workshop on Optical Waveguide Theory and Numerical Modeling (OWTNM 2018), April 13–14, Session O-6: ‘Nonlinear Photonics’, paper O-6.3, 52, Bad Sassendorf, Germany (2018b)Google Scholar
  18. Jandieri, V., Khomeriki, R., Erni, D.: Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), April 9–13, London, UK, Session CS40: ‘Electromagnetic methods for direct and inverse scattering involving stratified media’, paper CS40.2 (2018c)Google Scholar
  19. Kappeler, R.: Reducing the propagation losses of slab photonic crystal waveguides for active photonic devices. Diss. ETH Zürich, No. 20485, Zürich, July, (2012)Google Scholar
  20. Khomeriki, R.: Nonlinear bandgap transmission in optical waveguide arrays. Phys. Rev. Lett. 92, 063905–063908 (2004)ADSCrossRefGoogle Scholar
  21. Khomeriki, R., Chotorlishvili, L., Malomed, B., Berakdar, J.: Creation and amplification of electromagnon solitons by electric field in nanostructured multiferroics. Phys. Rev. B. 91, 041408(R) (2015)ADSCrossRefGoogle Scholar
  22. Krauss, T.: Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 40, 2666–2670 (2007)ADSCrossRefGoogle Scholar
  23. Leuthold, J., Koos, C., Freude, W.: Nonlinear silicon photonics. Nat. Photon. 4, 535–544 (2010)ADSCrossRefGoogle Scholar
  24. Linton, C.M., Thompson, I.: One- and two-dimensional lattice sums for the three-dimensional Helmholtz equation. J. Comput. Phys. 228, 1815–1829 (2009)ADSMathSciNetCrossRefGoogle Scholar
  25. Malishava, M., Khomeriki, R.: All-Phononic digital transistor on the basis of gap-soliton dynamics in an anharmonic oscillator ladder. Phys. Rev. Lett. 115, 104301 (2015)ADSCrossRefGoogle Scholar
  26. Monat, C., Corcoran, B., Pudo, D., Ebnali-Heidari, M., Grillet, C., Pelusi, M., Moss, D., Eggleton, B., White, T., Krauss, T.: Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron. 16, 344–356 (2010)ADSCrossRefGoogle Scholar
  27. Nicorovici, N.A., McPhedran, R.C.: Lattice sums for off-axis electromagnetic scattering by gratings. Phys. Rev. E 50, 3143–3160 (1994)ADSCrossRefGoogle Scholar
  28. Qiu, M., Azizi, K., Karlsson, A., Swillo, M., Jaskorzynska, B.: Numerical studies of mode gaps and coupling efficiency for line-defect waveguides in two-dimensional photonic crystals. Phys. Rev. B 64, 155113–155117 (2001)ADSCrossRefGoogle Scholar
  29. Rani, P., Fatima, S., Kalra, Y., Sinha, R.K.: Realization of all optical logic gates using universal NAND gates on photonic crystal platform. Superlattices Microstruct. 109, 619–625 (2017)ADSCrossRefGoogle Scholar
  30. Strasser, P., Flückiger, R., Wüest, R., Robin, F., Jäckel, H.: InP-based compact photonic crystal directional coupler with large operation range. Opt. Express 15, 8472–8478 (2007)ADSCrossRefGoogle Scholar
  31. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Norwood (1995)zbMATHGoogle Scholar
  32. Tanaka, Y., Nakamura, H., Sugimoto, Y., Ikeda, N., Asakawa, K., Inoue, K.: Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes. IEEE J. Quantum Electron. 41, 76–84 (2005)ADSCrossRefGoogle Scholar
  33. Valerio, G., Baccarelli, P., Burghignoli, P., Galli, A.: Comparative analysis of acceleration techniques for 2-D and 3-D Green’s functions in periodic structures along one and two directions. IEEE Trans. Antennas Propag. 55, 1630–1643 (2007)ADSMathSciNetCrossRefGoogle Scholar
  34. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  35. Yasumoto, K.: Electromagnetic Theory and Applications for Photonic Crystals. CRC Press, Boca Raton (2005)CrossRefGoogle Scholar
  36. Yasumoto, K., Yoshitomi, K.: Efficient calculation of lattice sums for free-space periodic Green’s function. IEEE Trans. Antennas Propag. 47, 1050–1055 (1999)ADSCrossRefGoogle Scholar
  37. Yasumoto, K., Toyama, H., Kushta, T.: Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique. IEEE Trans. Antennas Propag. 52, 2603–2611 (2004)ADSMathSciNetCrossRefGoogle Scholar
  38. Yasumoto, K., Jandieri, V., Liu, Y.: Coupled-Mode formulation of two-parallel photonic crystal waveguides. J. Opt. Soc. Am. A 30, 96–101 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.General and Theoretical Electrical Engineering (ATE), Faculty of EngineeringCENIDE – Center for Nanointegration Duisburg-Essen, University of Duisburg-EssenDuisburgGermany
  2. 2.School of Mathematical and Computer SciencesFree University of TbilisiTbilisiGeorgia
  3. 3.Department of PhysicsJavakhishvili Tbilisi State UniversityTbilisiGeorgia
  4. 4.Nanotechnology Centre, VSB-Technical University of OstravaOstrava, PorubaCzech Republic

Personalised recommendations