The properties of a tunable terahertz multichannel filter from one-dimensional photonic crystal dope by magnetized plasma defect

  • Mei-chen Xu
  • Song LiuEmail author
  • Shuang-ying Zhong


The terahertz magnetize-field tunable filtering properties in a multichannel filter based on a one-dimensional photonic crystal doped by magnetized plasma are theoretically investigated. The considered structure of (AB)4(ACB)N(AB)4 is designed, where A and B are two dielectric layers, C is the plasma layer, and N is the defect number. First, the structure can be worked as a multichannel filter whose channel number equals N. Second, the defect mode frequencies are all red-shifted as the ratio of dielectric refractive index or the sum of the A and B layer length increases. Third, we find that the channel frequencies can be shifted as a function of the applied magnetic field and the defect mode frequencies are all red-shifted as the plasma density increases. And the thickness of a plasma layer also affects the intensity, position and number of the defect modes. Therefore, these unusual properties may provide a novel design idea of a tunable terahertz multichannel transmission filter in future.


Terahertz wave Photonic crystals Defect modes Multichannel transmission filter Plasma defects TMM 



This work was supported by National Nature Science foundation of China (Nos. 61261006, 11165011 and 11563006).


  1. Aly, A.H., Elsayed, H.A., Ameen, A.A., Mohamed, S.H.: Tunable properties of one-dimensional photonic crystals that incorporate a defect layer of a magnetized plasma. Int. J. Mod. Phys. B 31(31), 1750239 (2017)Google Scholar
  2. An, S.U., Xian-Ji, L.I.: Defect modes of one-dimensional photonic crystal for realizable multiple channeled filter. Laser Infrared 40, 532–536 (2010)Google Scholar
  3. Chang, T.W., Chien, J.R., Wu, C.J.: Magnetic-field tunable multichannel filter in a plasma photonic crystal at microwave frequencies. Appl Opt 55, 943–946 (2016)ADSCrossRefGoogle Scholar
  4. Drysdale, T.D., Blaikie, R.J., Cumming, D.R.S.: Calculated and measured transmittance of a tunable metallic photonic crystal filter for terahertz frequencies. Appl. Phys. Lett. 83, 5362–5364 (2003)ADSCrossRefGoogle Scholar
  5. Ge, S., Chen, P., Shen, Z.: Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. Opt. Express 25, 12349–12356 (2017)ADSCrossRefGoogle Scholar
  6. Ginzburg, V.L.: The Propagation of Electromagnetic Waves in Plasmas, 53rd edn. Pergamon, Oxford (1970)Google Scholar
  7. Guo, B., Xie, M.Q., Peng, L.: Photonic band structures of 1-D plasma photonic crystal with time-variation plasma density. Phys. Plasmas 19, 044505 (2012)Google Scholar
  8. Hojo, H., Mase, A.: Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals. J. Plasma Fusion Res. 80, 89–90 (2004)ADSCrossRefGoogle Scholar
  9. Jamshidi-Ghaleh, K., Karami-Garehgeshlagi, F., Mazloom, A.A.: Tunability of multichannel optical filter based on magnetized one-dimensional plasma photonic crystal. Phys. Plasmas 22, 103507 (2015)Google Scholar
  10. Jiang, H., Chen, H., Li, H.: Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials. J. Appl. Phys. 98, 013101 (2005)Google Scholar
  11. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987)ADSCrossRefGoogle Scholar
  12. Kadlec, F., Němec, H., Fekete, L., Kužel, P.: Fast one-dimensional photonic crystal modulators for the terahertz range. Opt. Express 15, 8898–8912 (2007)ADSCrossRefGoogle Scholar
  13. Kong, X., Liu, S., Zhang, H., Li, C.: A novel tunable filter featuring defect mode of the TE wave from one-dimensional photonic crystals doped by magnetized plasma. Phys. Plasmas 17, 103506 (2010)Google Scholar
  14. Li, J.: Terahertz wave narrow bandpass filter based on photonic crystal. Opt. Commun. 283, 2647–2650 (2010)ADSCrossRefGoogle Scholar
  15. Lin, W.H., Wu, C.J., Yang, T.J., Chang, S.J.: Terahertz multichanneled filter in a superconducting photonic crystal. Opt. Express 18, 27155–27166 (2010)ADSCrossRefGoogle Scholar
  16. Liu, Y., Yi, L.: Tunable terahertz multichannel filter based on one-dimensional superconductor-dielectric photonic crystals. J. Appl. Phys. 116, 223102 (2014)Google Scholar
  17. Nemec, H., Duvillaret, L., Garet, F., Xavier, P., Richard, J., Rauly, D.: Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect. J. Appl. Phys. 96, 4072–4075 (2004)ADSCrossRefGoogle Scholar
  18. Nemec, H., Kuzel, P., Duvillaret, L., Pashkin, A., Dressel, M.: Highly tunable photonic crystal filter for the terahertz range. Opt. Lett. 30, 549–551 (2005)ADSCrossRefGoogle Scholar
  19. Okamoto, K., Tsuruda, K., Diebold, S., Hisatake, S., Fujita, M., Nagatsuma, T.: Terahertz sensor using photonic crystal cavity and resonant tunneling diodes. J. Infrared Millim Terahertz Waves 38, 1085–1097 (2017)CrossRefGoogle Scholar
  20. Qi, L., Yang, Z., Lan, F., Gao, X., Shi, Z.: Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals. Phys. Plasmas 17, 042501 (2010)Google Scholar
  21. Qi, L., Yang, Z., Fu, T.: Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer. Phys. Plasmas 19, 012509 (2012)Google Scholar
  22. Ren, H., Jiang, C., Hu, W., Gao, M., Wang, J.: Design and analysis of two-dimensional photonic crystals channel filter. Opt. Commun. 266, 342–348 (2006a)ADSCrossRefGoogle Scholar
  23. Ren, C., Tian, J., Feng, S., Tao, H., Liu, Y.: High resolution three-port filter in two-dimensional photonic crystal slabs. Opt. Express 14, 10014–10020 (2006b)ADSCrossRefGoogle Scholar
  24. Shen, Z., Zhou, S., Ge, S.: Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. Opt. Lett. 43(19), 4695–4698 (2018)ADSCrossRefGoogle Scholar
  25. Shih, T.T., Wu, Y.D., Lee, J.J.: Proposal for compact optical triplexer filter using 2-D photonic crystals. IEEE Photon. Technol. Lett. 21, 18–20 (2009)ADSCrossRefGoogle Scholar
  26. Skoromets, V., Němec, H., Kadlec, C., Fattakhovarohlfing, D., Kužel, P.: Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range. Appl. Phys. Lett. 102, 241106 (2013)Google Scholar
  27. Wang, J.: Filtering characteristics and application of defect mode of one-dimensional photonic crystal. Acta Optica Sinica 29, 2914–2919 (2009)CrossRefGoogle Scholar
  28. Wang, X.Y., Zhu, Z.W.: A novel tunable filter using magnetized plasma defect in one-demension photonic crystal. Chin. J. Lumin. 33, 747–753 (2012)CrossRefGoogle Scholar
  29. Yablonovitch, E.: Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987)ADSCrossRefGoogle Scholar
  30. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991)ADSCrossRefGoogle Scholar
  31. Yano, S., Segawa, Y., Bae, J.S., Miyazaki, H., Ohtaka, K., Yamaguchi, S.: Quantized state in a single quantum well structure of photonic crystals. Phys. Rev. B 63, 153316 (2001)Google Scholar
  32. Zhou, M., Chen, X.S., Wang, S.W.: Tunable F-P filters for terahertz frequency range based on a disorder one-dimensional photonic crystal. In: International Conference on Infrared Millimeter Waves and, International Conference on Terahertz Electronics. IEEE, 2006, pp. 248–248Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nanchang UniversityNanchangPeople’s Republic of China

Personalised recommendations