Influence of the electromagnetic field on the transition of a two-level system in a Gaussian confinement potential with LO phonon and of thickness effects

  • Xu-Fang Bai
  • Yu-Wei Zhao
  • Wei Xin
  • Hong-Wu Yin
  • EerdunchaoluEmail author


In this paper, the asymmetric Gaussian confinement potential and the parabolic confinement potential (PCP) are selected to describe the along growth direction and perpendicular to growth direction confinement potential (PC) of electron in a disk quantum dot, respectively. The phonons mean number and the energies of the ground and first excited states of the electron in a quantum dot with the polarization and the thickness effect are investigated by using Lee–Low–Pines unitary transformation and the Pekar-type variational method, and on the basis of the Fermi Golden Rule, the transition of the electron caused by the electromagnetic field is discussed. Our numerical results have displayed that the electric field and the magnetic field are an indispensable condition for the induced polaron transition. The weak electric field has a strong regulatory function on the transition. The influence of the well width \(L\) and the well depth \(V_{0}\) of the AGFCP on the mean number of phonons, energies and transition are important and interesting; it is also found in this work that the AGFCP is better than PCP in explaining the quantum size effect of QDs and modulating electron transition properties, respectively. This quantum system can be employed as a two-level quantum qubit.


Disk quantum dot (DQD) Thickness effects Asymmetric Gaussian confinement potential Transition probability Electromagnetic field 



This work was supported by the Open Research Fund of The State Key Laboratory of Superlattices and Microstructures (No. CHJG200701) and the Nature Science Foundation of Hebei Province, China (Grant No. E2013407119).


  1. Adamowski, J., Sobkowicz, M., Szafran, B., Bednarek, S.: Electron pair in a Gaussian confining potential. Phys. Rev. B 62, 4234–4237 (2000)ADSCrossRefGoogle Scholar
  2. Bai, X.-F., Xin, W., Yin, H.-W., Eerdunchaolu, : The properties of the ground state of the fröhlich bipolaron with rashba spin-orbit coupling in a quantum dot. Int. J. Theor. Phys. 56, 1673–1684 (2017)CrossRefGoogle Scholar
  3. Chen, Y.-J., Xiao, J.-L.: The temperature effects on the parabolic quantum dot qubit in the electric field. J. Low Temp. Phys. 170, 60–67 (2013)ADSCrossRefGoogle Scholar
  4. Dou, X.-M., Ying, Y.-U., Sun, B.-Q., Jiang, D.-S., Ni, H.-Q., Niu, Z.-C.: The resonant fluorescence of a single inas quantum dot in a cavity. Chin. Phys. Lett. 29(10), 104203–104205 (2012)ADSCrossRefGoogle Scholar
  5. Eerdunchaolu, Xiao, J.-L.: Effects of lattice vibration on the properties of the strong-coupling polaron in a quantum well. J. Phys. Soc. Jpn. 76, 044702–044708 (2007)ADSCrossRefGoogle Scholar
  6. Feng, Z.-Y., Yan, Z.-W.: Polaron effect on the optical rectification in spherical quantum dots with electric field. Chin. Phys. B 25(10), 107804–107809 (2016)ADSCrossRefGoogle Scholar
  7. Fotue, A.J., Kenfack, S.C., Tiotsop, M., Issofa, N., Tabue, Djemmo, M.P., Wirngo, A.V., Fotsin, H., Fai, L.C.: Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential. Eur. Phys. J. Plus 131, 75–81 (2016)CrossRefGoogle Scholar
  8. Griffiths, D.J.: Introduction to Quantum Mechanics. Pearon Education Inc, Upper Saddle River (2005)Google Scholar
  9. Gu, J., Liang, J.-J.: Energy spectrun analysis of donor-center quantum dot. Acta Phys. Sin. 54(11), 5335–5338 (2005). (in Chinese) Google Scholar
  10. Hai, G.Q., Peeters, F.M., Devreese, J.T.: Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well. Phys. Rev. B 47, 10358–10363 (1993)ADSCrossRefGoogle Scholar
  11. Jacak, L., Hawrylak, P., Wojs, A.: Quantum Dots. Springer, Berlin (1998)CrossRefGoogle Scholar
  12. Khordad, R., Goudarzi, S., Bahramiyan, H.: Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well. Indian J. Phys. 90(6), 659–664 (2016)ADSCrossRefGoogle Scholar
  13. Landau, L.D., Pekar, S.I.: Effective mass of a polaron. Zh. Eksp. Teor. Fiz. 18, 419–423 (1948)Google Scholar
  14. Lee, T.D., Low, F.M., Pines, S.D.: The motion of slow electrons in a crystal. Phys. Rev. 90, 297–302 (1953)ADSMathSciNetCrossRefGoogle Scholar
  15. Li, W.-P., Xiao, J.-L., Yin, J.-W., Yu, Y.-F., Wang, Z.-W.: The energy levels of a two-electron two-dimensional parabolic quantum dot. Chin. Phys. B 19(4), 047102–047105 (2010)ADSCrossRefGoogle Scholar
  16. Li, B.-X., Zheng, J., Chi, F.: Spin-selective transport of electron in a quantum dot under magnetic field. Chin. Phys. Lett. 29(10), 107302–107305 (2012)ADSCrossRefGoogle Scholar
  17. Li, B.-X., Zheng, J., Chi, F.: Rectification effect of the heat generation by electric current in a quantum dot molecular. Chin. Phys. Lett. 31(5), 057302–057306 (2014)ADSCrossRefGoogle Scholar
  18. Liang, S.-D., Chen, C.-Y., Jiang, S.-C., Lin, D.-L.: Size effect on exciton-phonon scattering in quantum wires. Phys. Rev. B 53, 15459–15463 (1996)ADSCrossRefGoogle Scholar
  19. Pekar, S.I.: Untersuchungen über die Elektronen-theorie der Kristalle. Akademie Verlag, Berlin (1954)zbMATHGoogle Scholar
  20. Shi, L., Yan, Z.-W.: Effects of electric field and size on the electron-phonon interaction in a spherical quantum dot with impurity. Eur. Phys. J. B 86, 244–251 (2013)ADSCrossRefGoogle Scholar
  21. Sun, Y., Ding, Z.-H., Xiao, J.-L.: Effects of temperature and magnetic field on the coherence time of a RbCl parabolic quantum dot qubit. J. Electron. Mater. 46(1), 439–442 (2017)ADSCrossRefGoogle Scholar
  22. Wang, H.-Y., Su, D., Yang, S., Dou, X.-M., Zhu, H.-J., Jiang, D.-S., Ni, H.-Q., Niu, Z.-C., Zhao, C.-L., Sun, B.-Q.: Chin. Phys. Lett. 32(10), 107804–107807 (2015)Google Scholar
  23. Xiao, J.-L.: The effect of electric field on RbCl asymmetric Gaussian potential quantum well qubit. Int. J. Theor. Phys. 55, 147–154 (2016)CrossRefGoogle Scholar
  24. Xie, W.-F.: Two interacting electrons in a Gaussian confining potential quantum dot. Solid State Commun. 127(5), 401–405 (2003)ADSCrossRefGoogle Scholar
  25. Xue, Y.-Z., Chen, Z.-S., Ni, H.-Q., Niu, Z.-C., Jiang, D.-S., Dou, X.-M., Sun, B.-Q.: Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm. Chin. Phys. B 26(8), 084202–084205 (2017)ADSCrossRefGoogle Scholar
  26. Yang, S., Dou, X.-M., Yu, Y., Ni, H.-Q., Niu, Z.-C., Jiang, D.-S., Sun, B.-Q.: Single-photon emission from gaas quantum dots embedded in nanowires. Chin. Phys. Lett. 32(7), 077804–077807 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xu-Fang Bai
    • 1
  • Yu-Wei Zhao
    • 2
  • Wei Xin
    • 2
  • Hong-Wu Yin
    • 2
  • Eerdunchaolu
    • 2
    Email author
  1. 1.College of Physics and Electronic InformationInner Mongolia University for NationalitiesTongliaoChina
  2. 2.Institute of Condensed Matter PhysicsHebei Normal University of Science and TechnologyQinhuangdaoChina

Personalised recommendations