Comparative analysis of silicon and black phosphorous as an add-layer in nanomaterial based plasmonic sensor

  • J. B. Maurya
  • Y. K. PrajapatiEmail author


In the proposed article silicon and black phosphorous as an add-layer above the plasmonic metal in nanomaterial (graphene and MoS2) based plasmonic sensor are compared. The reflectance curves are obtained for different thickness of silicon and black phosphorous by using transfer matrix method. The performance defining parameters i.e. shift in resonance angle, beam width of reflectance curve, and minimum reflectance intensity for a minute change of 0.005 in refractive index of sensing medium at the optimized thickness 5 nm of silicon and black-phosphorous, and conventional are (13.86, 10.96, 2.415), (4.956, 3.817, 1.419), and (0.012, 0.002, 0.002) respectively. Further, the addition of nanomaterials increases these parameters and generally follows the order MoS2-graphene > MoS2 > graphene. Furthermore, transverse-magnetic electric field shows that nanomaterial covered silicon have higher penetration depth than the nanomaterial covered black-phosphorous. The analysis shows that nanomaterial covered silicon can replace nanomaterial covered black-phosphorous in terms of higher sensitivity and penetration depth.


SPR sensor Black phosphorous Graphene MoS2 Silicon 



This work is partially supported under Project No. 34/14/10/2017-BRNS/34285 by Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), Government of India.


  1. Agarwal, S., Prajapati, Y.K., Maurya, J.B.: Effect of metallic adhesion layer thickness on surface roughness for sensing application. IEEE Photonics Technol. Lett. 28(21), 2415–2418 (2016)ADSCrossRefGoogle Scholar
  2. Aspnes, D.E., Studna, A.A.: Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 ev. Phys. Rev. B 27(2), 985–1009 (1983)ADSCrossRefGoogle Scholar
  3. Cui, S., Haihui, P., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., Chen, J.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632–8640 (2015)ADSCrossRefGoogle Scholar
  4. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)CrossRefGoogle Scholar
  5. Kravets, V.G., Jalil, R., Kim, Y.-J., Ansell, D., Aznakayeva, D.E., Thackray, B., Britnell, L., et al.: Graphene-protected copper and silver plasmonics. Sci. Rep. 4, 5517–5524 (2014)CrossRefGoogle Scholar
  6. Kretschmann, E., Raether, H.: Radiative decay of non radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23(12), 2135–2136 (1968)ADSCrossRefGoogle Scholar
  7. Kumar, V., Brent, J.R., Shorie, M., Kaur, H., Chadha, G., Thomas, A.G., Lewis, E.A., Rooney, A.P., Nguyen, L., Zhong, X.L., Burke, M.G.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces. 8(35), 22860–22868 (2016)CrossRefGoogle Scholar
  8. Laursen, A.B., Pedersen, T., Malacrida, P., Seger, B., Hansen, O., Vesborg, P.C., Chorkendorff, I.: MoS2—an integrated protective and active layer on n + p-Si for solar H 2 evolution. Phys. Chem. Chem. Phys. 15(46), 20000–20004 (2013)CrossRefGoogle Scholar
  9. Liu, H., Han, N., Zhao, J.: Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. Rsc Adv. 5(23), 17572–17581 (2015)CrossRefGoogle Scholar
  10. Maurya, J.B., Prajapati, Y. K.: Method to determine beam width of a dip in surface plasmon resonance sensor and its application thereof. Indian Patent 11005417 A (2016a)Google Scholar
  11. Maurya, J.B., Prajapati, Y.K.: A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt. Quant. Electron. 48(5), 280–291 (2016b)CrossRefGoogle Scholar
  12. Maurya, J.B., Prajapati, Y.K.: Influence of dielectric coating on performance of surface plasmon resonance sensor. Plasmonics 12(4), 1121–1130 (2017a)CrossRefGoogle Scholar
  13. Maurya, J.B., Prajapati, Y.K.: A novel method to calculate beam width of spr reflectance curve: a comparative analysis. IEEE Sens. Lett. 1, 1–10 (2017b)CrossRefGoogle Scholar
  14. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P.: Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2 hybrid structure with TiO2–SiO2 composite layer. Appl. Phys. A 121(2), 525–533 (2015a)ADSCrossRefGoogle Scholar
  15. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Performance of graphene–MoS2 based surface plasmon resonance sensor using Silicon layer. Opt. Quantum Electron. 47(11), 3599–3611 (2015b)CrossRefGoogle Scholar
  16. Maurya, J.B., Prajapati, Y.K., Tripathi, R.: Effect of molybdenum disulfide layer on surface plasmon resonance biosensor for the detection of bacteria. Silicon 10, 245–256 (2016a)CrossRefGoogle Scholar
  17. Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P., Tripathi, R.: Improved performance of the surface plasmon resonance biosensor based on graphene or MoS2 using silicon. Opt. Commun. 359, 426–434 (2016b)ADSCrossRefGoogle Scholar
  18. McGaughey, G.B., Gagné, M., Rappé, A.K.: π-Stacking interactions alive and well in proteins. J. Biol. Chem. 273(25), 15458–15463 (1998)CrossRefGoogle Scholar
  19. Pal, S., Verma, A., Prajapati, Y.K., Saini, J.P.: Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt. Quantum Electron. 49(12), 403–415 (2017)CrossRefGoogle Scholar
  20. Pal, S., Verma, A., Raikwar, S., Prajapati, Y.K., Saini, J.P.: Detection of DNA hybridization using graphene-coated black phosphorus surface plasmon resonance sensor. Appl. Phys. A 124, 394–404 (2018)ADSCrossRefGoogle Scholar
  21. Pockrand, I.: Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf. Sci. 72(3), 577–588 (1978)ADSCrossRefGoogle Scholar
  22. Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings, pp. 4–39. Springer, Berlin (1988)Google Scholar
  23. Shalabney, A., Abdulhalim, I.: Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A: Phys. 159(1), 24–32 (2010)CrossRefGoogle Scholar
  24. Sofer, Z., Sedmidubský, D., Huber, Š., Luxa, J., Bouša, D., Boothroyd, C., Pumera, M.: Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem. Int. Ed. 55(10), 3382–3386 (2016)CrossRefGoogle Scholar
  25. Tiefenthaler, K., Lukosz, W.: Sensitivity of grating couplers as integrated-optical chemical sensors. JOSA B6(2), 209–220 (1989)ADSCrossRefGoogle Scholar
  26. Wu, L., Chu, H.S., Koh, W.S., Li, E.P.: Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Express 18(14), 14395–14400 (2010)ADSCrossRefGoogle Scholar
  27. Wu, L., Guo, J., Wang, Q., Lu, S., Dai, X., Xiang, Y.J., Fan, D.: Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 249, 542–548 (2017)CrossRefGoogle Scholar
  28. Xu, R., Yang, J., Zhu, Y., Yan, H., Pei, J., Myint, Y.W., Zhang, S., Lu, Y.: Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene–gold hybrid systems. Nanoscale 8(1), 129–135 (2016)ADSCrossRefGoogle Scholar
  29. Yew, Y.T., Sofer, Z., Mayorga-Martinez, C.C., Pumera, M.: Black phosphorus nanoparticles as a novel fluorescent sensing platform for nucleic acid detection. Mater. Chem. Front. 1(6), 1130–1136 (2017)CrossRefGoogle Scholar
  30. Zeng, S., Siyi, H., Xia, J., Anderson, T., Dinh, X.-Q., Meng, X.-M., Coquet, P., Yong, K.-T.: Graphene–MoS 2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sens. Actuators B: Chem. 207, 801–810 (2015)CrossRefGoogle Scholar
  31. Zhu, C., Zeng, Z., Li, H., Li, F., Fan, C., Zhang, H.: Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Government Engineering CollegeAjmerIndia
  2. 2.Motilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations