Advertisement

Optical solitons in nematic liquid crystals with Kerr and parabolic law nonlinearities

  • Nauman Raza
  • Usman Afzal
  • Asma Rashid Butt
  • Hadi RezazadehEmail author
Article
  • 59 Downloads

Abstract

In this work, a study is carried out to analyze nematicons in liquid crystals in the presence of Kerr and parabolic law nonlinearity. Exp(−\(\phi ({\xi })\))-Expansion method is incorporated in this regard. Solutions obtained include hyperbolic, periodic and rational solutions along with their combo type solutions in both cases of nonlinearity and their existence is guaranteed by the constraints retrieved during the process.

Keywords

Spacial optical solitons Liquid crystals Nematicons Kerr law nonlinearity Parabolic law nonlinearity 

Notes

References

  1. Akbar, M.A., Ali, N.H.M.: Exp-function method for Duffing equation and new solutions of (2+1)-dimensional dispersive long wave equations. Prog. Appl. Math. 1(2), 30–42 (2011)Google Scholar
  2. Arnous, A.H., Zaka Ullah, M., Asma, M., Moshokoa, S.P., Mirzazadeh, M., Biswas, A., Belic, M.: Nematicons in liquid crystals by modified simple equation method. Nonlinear Dyn. 88, 2863–2872 (2017)MathSciNetCrossRefGoogle Scholar
  3. Assanto, G.: Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals. Wiley, New York (2012)CrossRefGoogle Scholar
  4. Assanto, G., Karpierz, M.: Nematicons: self-localized beams in nematic liquid crystals. Liq. Cryst. 36, 1161–1172 (2009)CrossRefGoogle Scholar
  5. Bekir, A., Boz, A.: Exact solutions for nonlinear evolution equations using Exp-function method. Phys. Lett. A 372, 1619–1625 (2008)ADSMathSciNetCrossRefGoogle Scholar
  6. Biswas, A., Al-Amr, M.O., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P., Belic, M.: Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution. Optik 165, 233–239 (2018)ADSCrossRefGoogle Scholar
  7. Bulut, H., Sulaiman, T.A., Baskonus, H.M., Rezazadeh, H., Eslami, M., Mirzazadeh, M.: Optical solitons and other solutions to the conformable space–time fractional Fokas–Lenells equation. Optik 172, 20–27 (2018)ADSCrossRefGoogle Scholar
  8. Conti, C., Peccianti, M., Assanto, G.: Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113–902 (2004)Google Scholar
  9. Ebaid, A.: An improvement on the Exp-function method when balancing the highest order linear and nonlinear terms. J. Math. Anal. Appl. 392(1), 1–5 (2012)MathSciNetCrossRefGoogle Scholar
  10. Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Zhou, Q., Triki, H., Moshokoa, S.P., Biswas, A.: Optical solitons with anti-cubic nonlinearity by extended trial equation method. Optik 136, 368–373 (2017a)ADSCrossRefGoogle Scholar
  11. Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Ullah, M.Z., Zhou, Q., Moshokoa, S.P., Biswas, A., Belic, M.: Nematicons in liquid crystals by extended trial equation method. J. Nonlinear Opt. Phys. Mater. 26, 1750005 (2017b)ADSCrossRefGoogle Scholar
  12. Ekici, M., Mirzazadeh, M., Sonmezoglu, A., Zhou, Q., Triki, H., Ullah, M.Z., Moshokoa, S.P., Biswas, A.: Optical solitons in birefringent fibers with Kerr nonlinearity by Exp-function method. Optik 131, 964–976 (2017c)ADSCrossRefGoogle Scholar
  13. Garcìa-Reimbert, C., Minzoni, A.A., Smyth, N.F.: Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime. J. Opt. Soc. Am. B 23, 294–301 (2006a)ADSCrossRefGoogle Scholar
  14. Garcìa-Reimbert, C., Minzoni, A.A., Smyth, N.F., Worthy, A.L.: Large-amplitude nematicon propagation in a liquid crystal with local response. J. Opt. Soc. Am. B 23, 2551–2558 (2006b)ADSCrossRefGoogle Scholar
  15. He, J.H., Abdou, M.A.: New periodic solutions for nonlinear evolution equations using Exp-function method. Chaos Solitons Fractals 34(5), 1421–1429 (2007)ADSMathSciNetCrossRefGoogle Scholar
  16. He, J.H., Wu, X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30(3), 700–708 (2006)ADSMathSciNetCrossRefGoogle Scholar
  17. Javid, A., Raza, N.: Singular and dark optical solitons to the well posed Lakshamanan–Porsezian–Daniel model. Optik 171, 120–129 (2018)ADSCrossRefGoogle Scholar
  18. Kavitha, L., Venkatesh, M., Dhamayanthi, S., Gopi, D.: Nonlinear refractive index induced collision and propagation of nematicons. J. Mol. Liq. 197, 142–151 (2014)CrossRefGoogle Scholar
  19. Kavitha, L., Venkatesh, M., Dhamayanthi, S., Gopi, D.: Modulational instability of optically induced nematicon propagation. Chin. Phys. B 22(12), 129–401 (2013)CrossRefGoogle Scholar
  20. Khan, K., Akbar, M.A.: The Exp(−\(\phi ({\xi })\))-Expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation. Int. J. Dyn. Syst. Differ. Equ. 5(1), 72–83 (2014)MathSciNetzbMATHGoogle Scholar
  21. Khoo, I.C., Wu, N.T.: Optics and Nonlinear Optics of Liquid Crystals. World Scientific Publishing, Singapore (1993)CrossRefGoogle Scholar
  22. Liu, J.G., Eslami, M., Rezazadeh, H., Mirzazadeh, M.: Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev–Petviashvili equation. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4612-4
  23. Liu, X., Triki, H., Zhou, Q., Mirzazadeh, M., Liu, W., Biswas, A., Belic, M.: Generation and control of multiple solitons under the influence of parameters. Nonlinear Dyn. 95, 143–150 (2019a)CrossRefGoogle Scholar
  24. Liu, W., Zhang, Y., Triki, H., Mirzazadeh, M., Ekici, M., Zhou, Q., Biswas, A., Belic, M.: Interaction properties of solitonics in inhomogeneous optical fibers. Nonlinear Dyn. 95, 557–563 (2019b)CrossRefGoogle Scholar
  25. Minzoni, A.A., Smyth, N.F., Worthy, A.L.: Modulation solutions for nematicon propagation in non-local liquid crystals. J. Opt. Soc. Am. B 24, 1549–1556 (2007)ADSCrossRefGoogle Scholar
  26. Navickas, Z., Ragulskis, M., Bikulciene, L.: Be careful with the Exp-function method-additional remarks. Commun. Nonlinear Sci. Numer. Simul. 15, 3874–3886 (2010)ADSMathSciNetCrossRefGoogle Scholar
  27. Noor, M.A., Mohyud-Din, S.D., Waheed, A.: Exp-function method for generalized traveling solutions of master partial differential equation. Acta Appl. Math. 104(2), 131–137 (2008)MathSciNetCrossRefGoogle Scholar
  28. Peccianti, M., Assanto, G.: Nematicons. Phys. Rep. 516, 147–208 (2012)ADSCrossRefGoogle Scholar
  29. Ravi, L.K., Saha Ray, S., Sahoo, S.: New exact solutions of coupled Boussinesq–Burgers equations by Exp-function method. J. Ocean Eng. Sci. 2, 34–46 (2017)CrossRefGoogle Scholar
  30. Raza, N., Javid, A.: Optical dark and dark-singular soliton solutions of (1+2)-dimensional chiral nonlinear Schrdinger’s equation. Waves Random Complex Media (2018a).  https://doi.org/10.1080/17455030.2018.1451009
  31. Raza, N., Javid, A.: Optical dark and singular solitons to the Biswas–Milovic equation in nonlinear optics with spatio-temporal dispersion. Optik 158, 1057–1094 (2018b)ADSCrossRefGoogle Scholar
  32. Raza, N., Zubair, A.: Bright, dark and dark-singular soliton solutions of nonlinear Schrodinger’s equation with spatio-temporal dispersion. J. Mod. Opt. 65, 1975–1982 (2018)ADSMathSciNetCrossRefGoogle Scholar
  33. Raza, N., Murtaza, I.G., Sial, S., Younis, M.: On solitons: the biomolecular nonlinear transmission line models with constant and time variable coefficients. Waves Random Complex Media (2017).  https://doi.org/10.1080/17455030.2017.1368734 CrossRefGoogle Scholar
  34. Rezazadeh, H., Alizamini, S.M.M., Eslami, M., Rezazadeh, M., Mirzazadeh, M., Abbagari, S.: New optical solitons of nonlinear conformable fractional Schrödinger–Hirota equation. Optik 172, 545–553 (2018a)ADSCrossRefGoogle Scholar
  35. Rezazadeh, H., Tariq, H., Eslami, M., Mirzazadeh, M., Zhou, Q.: New exact solutions of nonlinear conformable time-fractional Phi-4 equation. Chin. J. Phys. 56, 2805–2816 (2018b)CrossRefGoogle Scholar
  36. Savescu, M., Johnson, S., Sanchez, P., Zhou, Q., Mahmood, M.F., Zerrad, E., Biswas, A., Belic, M.: Nematicons in liquid crystals. J. Comput. Theor. Nanosci. 12, 4667–4673 (2015)CrossRefGoogle Scholar
  37. Sciberras, L.W., Minzoni, A.A., Smyth, N.F., Assanto, G.: Steering of optical solitary waves by coplanar low power beams in reorientational media. J. Nonlinear Opt. Phys. Mater. 23(4), 1450045 (2014)ADSCrossRefGoogle Scholar
  38. Simoni, F.: Nonlinear Optical Properties of Liquid Crystals. World Scientific Publishing, London (1997)CrossRefGoogle Scholar
  39. Tabiryan, N.V., Sukhov, A.V., Zel’dovich, B.Y.A.: Orientational optical nonlinearity of liquid crystals. Mol. Cryst. Liq. Cryst. 136, 1–139 (1986)CrossRefGoogle Scholar
  40. Yang, C., Zhou, Q., Triki, H., Mirzazadeh, M., Ekici, M., Liu, W., Biswas, A., Belic, M.: Bright soliton interactions in a (2 + 1)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4609-z CrossRefGoogle Scholar
  41. Yu, W., Ekici, M., Mirzazadeh, M., Zhou, Q., Liu, W.: Periodic oscillations of dark solitons in nonlinear optics. Optik 165, 341–344 (2018)ADSCrossRefGoogle Scholar
  42. Yu, W., Zhou, Q., Mirzazadeh, M., Liu, W., Biswas, A.: Phase shift, amplification, oscillation and attenuation of solitons in nonlinear optics. J. Adv. Res. 15, 69–76 (2019)CrossRefGoogle Scholar
  43. Zhang, Y., Yang, C., Yu, W., Mirzazadeh, M., Zhou, Q., Liu, W.: Interactions of vector anti-dark solitons for the coupled nonlinear Schrödinger equation in inhomogeneous fibers. Nonlinear Dyn. 94, 1351–1360 (2018)CrossRefGoogle Scholar
  44. Zhou, Q., Yao, D., Chen, F.: Analytical study of optical solitons in media with Kerr and parabolic law nonlinearities. J. Mod. Opt. 60(19), 1652–1657 (2013)ADSCrossRefGoogle Scholar
  45. Zhou, Q., Pan, A., Rezazadeh, H., Mirzazadeh, M., Moosavi, S.S., Eslami, M., Ekici, M., Liu, W.: Exact solutions of the perturbed modified KdV equation using the functional variable method. J. Optoelectron. Adv. Mater. 20, 279–284 (2018)Google Scholar
  46. Zubair, A., Raza, N., Mirzazadeh, M., Liu, W., Zhou, Q.: Analytic study on optical solitons in parity-time-symmetric mixed linear and nonlinear modulation lattices with non-Kerr nonlinearities. Optik 173, 249–262 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nauman Raza
    • 1
  • Usman Afzal
    • 2
  • Asma Rashid Butt
    • 3
  • Hadi Rezazadeh
    • 4
    Email author
  1. 1.Department of MathematicsUniversity of the PunjabLahorePakistan
  2. 2.School of Mathematical SciencesPeking UniversityBeijingChina
  3. 3.Department of MathematicsUniversity of Engineering and TechnologyLahorePakistan
  4. 4.Faculty of Engineering TechnologyAmol University of Special Modern TechnologiesAmolIran

Personalised recommendations